RESEARCH ON ULTRA-SHORT-TERM SOLAR IRRADIANCE PREDICTION METHOD AND DEVICEBASED ON GROUND-BASED CLOUD IMAGES

Zhang Zhen, Chen Tianpeng, Wang Lei, Shao Xi, Zhang Qiyuan, Ju Xiuli

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (1) : 133-140.

PDF(2051 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2051 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (1) : 133-140. DOI: 10.19912/j.0254-0096.tynxb.2021-0912

RESEARCH ON ULTRA-SHORT-TERM SOLAR IRRADIANCE PREDICTION METHOD AND DEVICEBASED ON GROUND-BASED CLOUD IMAGES

  • Zhang Zhen1,2, Chen Tianpeng1, Wang Lei1,2, Shao Xi1, Zhang Qiyuan1, Ju Xiuli2
Author information +
History +

Abstract

This paper proposes a cloud image exposure optimization method based on the all-sky imager, the ground-based cloud map is collected by the self-developed ground-based cloud map collection instrument, combined with cloud images with different exposures continuously shot at the same time, the cloud images are processed using dynamic range optimization algorithms. Perform feature extraction on the optimized cloud image, use image features as the input data of the prediction model, and establish a prediction model based on BP neural network. The verification results show that on the 5 min prediction scale, compared with the persistent model, the root mean square error of the established model is reduced by 14.31%. Compared with the existing research, the model established in this paper has a lower ERMSE.

Key words

solar energy / irradiance prediction / ground-based cloud image / image processing / machine learning

Cite this article

Download Citations
Zhang Zhen, Chen Tianpeng, Wang Lei, Shao Xi, Zhang Qiyuan, Ju Xiuli. RESEARCH ON ULTRA-SHORT-TERM SOLAR IRRADIANCE PREDICTION METHOD AND DEVICEBASED ON GROUND-BASED CLOUD IMAGES[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 133-140 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0912

References

[1] 徐正阳, 路志英, 刘洪. 基于泄漏积分型回声状态网络的在线学习光伏功率预测[J]. 电力系统及其自动化学报, 2018, 30(2): 1-7.
XU Z Y, LU Z Y, LIU H.Online-learning PV power forecasting based on leaky-integrator echo state network[J]. Proceedings of the CSU-EPSA, 2018, 30(2): 1-7.
[2] AHMED R, SREERAM V, MISHRA Y, et al.A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization[J]. Renewable and sustainable energy reviews, 2020, 124: 109792.
[3] MARQUEZ R, COIMBRA C F M. Intra-hour DNI forecasting based on cloud tracking image analysis[J]. Solar energy, 2013, 91(5): 327-336.
[4] WEST S R, ROWE D, SAYEEF S, et al.Short-term irradiance forecasting using skycams: motivation and development[J]. Solar energy, 2014, 110(11): 188-207.
[5] CALDAS M, ALONSO-SUAREZ R.Very short-term solar irradiance forecast using all-sky imaging and real-time irradiance measurements[J]. Renewable energy, 2019, 143(5): 1643-1658.
[6] RICHARDSON W, CANADILLAS D, MONCADA A, et al.Validation of all-sky imager technology and solar irradiance forecasting at three locations: NREL, San Antonio, Texas, and the Canary Islands, Spain[J]. Applied sciences, 2019, 9(4): 684.
[7] 丁宇宇, 丁杰, 周海, 等. 基于全天空成像仪的光伏电站水平面总辐射预报[J]. 中国电机工程学报, 2014, 34(1): 50-56.
DING Y Y, DING J, ZHOU H, et al.Forecasting of global horizontal irradiance in photovoltaic power stations based on the total sky imager[J]. Proceedings of the CSEE, 2014, 34(1): 50-56.
[8] 陈志宝, 丁杰, 周海, 等. 地基云图结合径向基函数人工神经网络的光伏功率超短期预测模型[J]. 中国电机工程学报, 2015, 35(3): 561-567.
CHEN Z B, DING J, ZHOU H, et al.A model of very short-term photovoltaic power forecasting based on ground-based cloud images and RBF neural network[J]. Proceedings of the CSEE, 2015, 35(3): 561-567.
[9] 丁明, 徐志成, 赵波, 等. 考虑云层影响的大型光伏发电系统辐照强度计算模型[J]. 中国电机工程学报, 2015, 35(17): 4291-4299.
DING M, XU Z C, ZHAO B, et al.Solar irradiance model for large-scale photovoltaic generation considering passing cloud shadow effect[J]. Proceedings of the CSEE, 2015, 35(17): 4291-4299.
[10] 朱婷婷. 基于地基云图的太阳直接辐照度超短期预测研究[D]. 南京: 东南大学, 2019.
ZHU T T.Research on inter-hour forecast of direct normal irradiance based on ground-based cloud images[D]. Nanjing: Southeast University, 2019.
[11] 路志英, 赵庆霞, 李鑫, 等. 基于地基云图图像特征的光伏功率预测[J]. 电力系统及其自动化学报, 2020, 32(8): 70-76.
LU Z Y, ZHAO Q X, LI X, et al.Photovoltaic power prediction based on image features of ground cloud image[J]. Proceedings of the CSU-EPSA, 2020, 32(8): 70-76.
[12] 余光正, 陆柳, 汤波, 等. 基于云图特征提取的改进混合神经网络超短期光伏功率预测方法[J]. 中国电机工程学报, 2021, 41(20):6989-7002.
YU G Z, LU L, TANG B, et al.An improved hybrid neural network ultra-short-term photovoltaic power forecasting method based on cloud image feature extraction[J]. Proceedings of the CSEE, 2021, 41(20): 6989-7002.
[13] 王育飞, 付玉超, 薛花. 计及太阳辐射和混沌特征提取的光伏发电功率DMCS-WNN预测法[J]. 中国电机工程学报, 2019, 39(S1): 63-71.
WANG Y F, FU Y C, XUE H.DMCS-WNN prediction method of photovoltaic power generation taking into account solar radiation and chaotic feature extraction[J]. Proceedings of the CSEE, 2019, 39(S1): 63-71.
[14] 叶林, 陈政, 赵永宁, 等. 基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型[J]. 电力系统自动化, 2015, 39(16): 16-22.
YE L, CHEN Z, ZHAO Y N, et al.Based on genetic algorithm-fuzzy radial basis function neural network photovoltaic power generation prediction model[J]. Automation of electric power systems, 2015, 39(16): 16-22.
[15] RICHARDSON W, KRISHNASWAMI H, VEGA R, et al.A low cost edge computing all-sky imager for cloud tracking and intra-hour irradiance forecasting[J]. Sustainability, 2017, 9(4): 482-498.
[16] 周水良, 祝雪妹. 基于光流法的云层测速新方法[J]. 太阳能学报, 2017, 38(12): 3348-3354.
ZHOU S L, ZHU X M.New method to measure moving velocity of clouds based on optical flow[J]. Acta energiae solaris sinica, 2017, 38(12): 3348-3354.
[17] 王飞. 并网型光伏电站发电功率预测方法与系统[D]. 北京: 华北电力大学, 2013.
WANG F.Grid-connected photovoltaic power station generating power prediction method and system[D]. Beijing: North China Electric Power University, 2013.
[18] INEICHEN P,PEREZ R.A new airmass independent formulation for the linke turbidity coefficient[J]. Solar energy, 2002, 73(3): 151-157.
[19] PEDRO H T C, LARSON D P, COIMBRA C F M. A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods[J]. Journal of renewable and sustainable energy, 2019, 11(3): 1-10.
[20] 蒋俊霞, 高晓清, 吕清泉, 等. 基于地基云图的云跟踪与太阳辐照度超短期预报方法研究[J]. 太阳能学报, 2020, 41(5): 351-358.
JIANG J X,GAO X Q,LYU Q Q, et al.Study on cloud tracking and solar irradiance ultra-short-team forecasting based on TSI images[J]. Acta energiae solaris sinica, 2020, 41(5): 351-358.
PDF(2051 KB)

Accesses

Citation

Detail

Sections
Recommended

/