EVALUATION OF WIND ENERGY RESOURCES IN JIANGSU SEA AREA BASED ON ERA5 DATA

Ji Huifeng, Liu Jitang, Song Xin’gang, Ding Yanzhe, Gao Qingqing

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (1) : 320-324.

PDF(5931 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5931 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (1) : 320-324. DOI: 10.19912/j.0254-0096.tynxb.2021-0952

EVALUATION OF WIND ENERGY RESOURCES IN JIANGSU SEA AREA BASED ON ERA5 DATA

  • Ji Huifeng, Liu Jitang, Song Xin’gang, Ding Yanzhe, Gao Qingqing
Author information +
History +

Abstract

The wind energy resources in Jiangsu Sea area are evaluated based on the ERA5 surface wind data from the European Center for Medium-Range Weather Forecasts (ECMWF) considering the temporal and spatial distribution, stability and resource reserves of wind power density. The results show that the annual average of wind speed and wind power density in the south area is generally higher than the north and increase with the distance from the shore. The wind power density level of Lianyungang Nearshore Area is less than level 2, and level 3 and above are mainly distributed in offshore waters; while most areas in Yancheng and Nantong reach level 2 or level 3, and can be rapidly raised to level 4 or above about 30 km offshore, except for the coastal intertidal beach area. Wind power density shows obvious seasonal variation except in the coastal areas. The wind energy stability in the waters near Nantong and the south of Yancheng is the best, and relatively poor in the coastal area of Lianyungang. The effective reserves of wind energy resources in Nantong and southern Yancheng are the highest, followed by northern Yancheng, and the lowest in Lianyungang.

Key words

wind energy resource / reanalysis data / wind power density / effective reserves / Jiangsu Sea area

Cite this article

Download Citations
Ji Huifeng, Liu Jitang, Song Xin’gang, Ding Yanzhe, Gao Qingqing. EVALUATION OF WIND ENERGY RESOURCES IN JIANGSU SEA AREA BASED ON ERA5 DATA[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 320-324 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0952

References

[1] 张秀芝, BODDINGTON R, 朱蓉, 等. 中国近海风电场开发指南[M]. 北京: 气象出版社, 2010: 1.
ZHANG X Z, BODDINGTON R, ZHU R, et al.Wind farm development guide in China offshore seas[M]. Beijing: China Meteorological Press, 2010: 1.
[2] 张云, 景昕蒂, 崔丹丹, 等. 江苏省海上风电用海项目调查[J]. 海洋开发与管理, 2018, 35(10): 94-97.
ZHANG Y, JING X D, CUI D D, et al.The situation of offshore wind power in Jiangsu province[J]. Ocean development and management, 2018, 35(10): 94-97.
[3] UPPALA S M, KÅLLBERG P W, SIMMONS A J, et al. The ERA-40 re-analysis[J]. Quarterly journal of the Royal Meteorological Society, 2005, 131(612):2961-3012.
[4] KALNAY E, KANAMITSU M, KISTLER R, et al.The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-472.
[5] ONOGI K, KOIDE H, SAKAMOTO M, et al.JRA-25: Japanese 25-year re-analysis project—progress and status[J]. Quarterly journal of the Royal Meteorological Society, 2005, 131(613): 3259-3268.
[6] HOFFMAN R N, LEIDNER S M.An introduction to the near-real-time QuikSCAT data[J]. Weather and forecasting, 2005, 20(4):476-493.
[7] FIGA-SALDAÑA J, WILSON J J W, ATTEMA E, et al. The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: a follow on for European wind scatterometers[J]. Canadian journal of remote sensing, 2002, 28(3): 404-412.
[8] BECHTLE P, SCHELBERGEN M, SCHMEHL R, et al.Airborne wind energy resource analysis[J]. Renewable energy, 2019, 141(1): 1103-1116.
[9] 乔守文, 孙嘉诚, 石洪源, 等. 基于ERA5的黄渤海附近海域波浪能资源时空特征分析[J]. 海洋与湖沼, 2020, 51(6): 1350-1358.
QIAO S W, SUN J C, SHI H Y, et al.Spatial and temporal characteiustics of wave energy resources in the Yellow sea and Bohai sea using ERA5 datasets[J]. Oceanologia et limnologia sinica, 2020, 51(6): 1350-1358.
[10] HERSBACH H, DEE D.ERA5 reanalysis is in production [EB/OL]. https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production.
[11] CZERNECKI B, TASZAREK M, MAROSZ M, et al.Application of machine learning to large hail prediction-the importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5[J]. Atmospheric research, 2019, 227(10): 249-262.
[12] CORNETT A M.A global wave energy resource assessment[J]. Sea technology, 2009, 50(4): 59-64.
[13] 钱恒, 张韧. 北极西北航道风能资源调查分析[J]. 极地研究, 2020, 32(3): 362-372.
QIAN H, ZHANG R.Wind resource assessment for the northwest passage[J]. Chinese journal of polar research, 2020, 32(3): 362-372.
[14] 王丽娜, 祝青林, 徐梅. 大连地区风能资源评估及分布[J]. 气象科技, 2010, 38(4): 521-525.
WANG L N, ZHU Q L, XU M.Assessment and distribution of wind energy resources in Dalian[J]. Meteorological science and technology, 2010, 38(4): 521-525.
[15] GB/T 18710—2002, 风电场风能资源评估方法[S].
GB/T 18710—2002, Methodology of wind energy resource assessment for wind farm[S].
PDF(5931 KB)

Accesses

Citation

Detail

Sections
Recommended

/