FAULT DIAGNOSIS OF WIND TURBINE GEARBOX BASED ON DEEP LEARNING

Xiao Junqing, Jin Jiangtao, Li Chun, Xu Zifei, Luo Shuai

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 302-309.

PDF(2885 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2885 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 302-309. DOI: 10.19912/j.0254-0096.tynxb.2021-0956

FAULT DIAGNOSIS OF WIND TURBINE GEARBOX BASED ON DEEP LEARNING

  • Xiao Junqing1, Jin Jiangtao1, Li Chun1,2, Xu Zifei1, Luo Shuai1
Author information +
History +

Abstract

The gearbox of wind turbine runs in multi-noise and high speed for a long time, the vibration signal presents nonlinear characteristics, which makes it difficult to extract the fault information accurately and effectively. Based on this, a fault diagnosis method based on the fusion of complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN), and convolutional neural network is proposed. CEEMDAN’s strong nonlinear feature decomposition ability is used to decompose vibration signals, and multiple correlation coefficients are used to screen effective fault feature components and eliminate redundant components, and then the optimal component group is input into CNN to realize fault diagnosis. The results show that comparing with EMD-CNN and EEMD-CNN, the proposed method has better robustness and generalization under different fault states and SNR.

Key words

wind turbines / fault diagnosis / signal to noise ration / CNN / correlation analysis methods

Cite this article

Download Citations
Xiao Junqing, Jin Jiangtao, Li Chun, Xu Zifei, Luo Shuai. FAULT DIAGNOSIS OF WIND TURBINE GEARBOX BASED ON DEEP LEARNING[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 302-309 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0956

References

[1] MARUGÁN A P, MARQUEZ F P G. Advanced analytics for detection and diagnosis of false alarms and faults: a real case study[J]. Wind energy, 2019, 22(11): 1622-1635.
[2] HU Z X, WANG Y, GE M F, et al.Data-driven fault diagnosis method based on compressed sensing and improved multiscale network[J]. IEEE transactions on industrial electronics, 2020, 67(4): 3216-3225.
[3] WANG L, LIU Z W, MIAO Q, et al.Time-frequency analysis based on ensemble local mean decomposition and fast kurtogram for rotating machinery fault diagnosis[J]. Mechanical systems and signal processing, 2018, 103: 60-75.
[4] WANG D, ZHAO Y, YI C, et al.Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings[J]. Mechanical systems and signal processing, 2018, 101: 292-308.
[5] LEI Y G, HE Z J, ZI Y Y.Application of the EEMD method to rotor fault diagnosis of rotating machinery[J]. Mechanical systems and signal processing, 2009, 23(4): 1327-1338.
[6] LI S P, QIN N, HUANG D R, et al.Damage localization of stacker’s track based on EEMD-EMD and DBSCAN cluster algorithms[J]. IEEE transactions on instrumentation and measurement, 2020, 69(5): 1981-1992.
[7] DING F, LI X, QU J X.Fault diagnosis of rolling bearing based on improved CEEMDAN and distance evaluation technique[J]. Journal of vibroengineering, 2017, 19(1): 260-275.
[8] WANG F A, JIANG H K, SHAO H D, et al.An adaptive deep convolutional neural network for rolling bearing fault diagnosis[J]. Measurement science and technology, 2017, 28(9): 095005.
[9] LIU X L, TIAN Y, LEI X H, et al.Deep forest based intelligent fault diagnosis of hydraulic turbine[J]. Journal of mechanical science and technology, 2019, 33(5): 2049-2058.
[10] 李东东, 王浩, 杨帆, 等. 基于一维卷积神经网络和Soft-Max分类器的风电机组行星齿轮箱故障检测[J]. 电机与控制应用, 2018, 45(6): 80-87, 108.
LI D D, WANG H, YANG F, et al.Fault detection of wind turbine planetary gear box using 1D convolution neural networks and Soft-Max classifier[J]. Electric machines & control application, 2018, 45(6): 80-87, 108.
[11] XIA M, LI T, XU L, et al.Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks[J]. IEEE/ASME transactions on mechatronics, 2018, 23(1): 101-110.
[12] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al.A complete ensemble empirical mode decomposition with adaptive noise[C]//Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), Prague, Czech Republic, 2011.
[13] 李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9): 2508-2515, 2565.
LI Y D, HAO Z B, LEI H.Survey of convolutional neural network[J]. Jouraal of computer applications, 2016, 36(9): 2508-2515, 2565.
[14] ZHAO B, ZHANG X M, ZHAN Z H, et al.A robust construction of normalized CNN for online intelligent condition monitoring of rolling bearings considering variable working conditions and sources[J]. Measurement, 2021, 174: 108973.
[15] KUO C C J. Understanding convolutional neural networks with a mathematical model[J]. Journal of visual communication and image representation, 2016, 41: 406-413.
[16] KRIZHEVSKY A, SUTSKEVE I, HINTON G E.ImagNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6): 84-90.
[17] TANG S, YE M, ZHU C, et al.Adaptive pedestrian detection using convolutional neural network with dynamically adjusted classifier[J]. Journal of electronic imaging, 2017, 26(1): 013012.
[18] JIN K H, MCCANN M T, FROUSTEY E, et al.Deep convolutional neural network for inverse problems in imaging[J]. IEEE transactions on image processing, 2017, 26(9): 4509-4522.
[19] SHENG S W.Wind turbine gearbox vibration condition monitoring benchmarking datasets[R]. National Renewable Energy Laboratory, Colorado, USA, 2012.
PDF(2885 KB)

Accesses

Citation

Detail

Sections
Recommended

/