RESEARCH ON FRACTIONAL ORDER TIME DOMAIN SUBSPACE MODEL OF PEMFC BASED ON ALMBO ALGORITHM

Sun Chengshuo, Qi Zhidong, Ye Weiqin, Shan Liang

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (1) : 467-474.

PDF(2075 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2075 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (1) : 467-474. DOI: 10.19912/j.0254-0096.tynxb.2021-0971

RESEARCH ON FRACTIONAL ORDER TIME DOMAIN SUBSPACE MODEL OF PEMFC BASED ON ALMBO ALGORITHM

  • Sun Chengshuo, Qi Zhidong, Ye Weiqin, Shan Liang
Author information +
History +

Abstract

The power generation process of proton exchange membrane fuel cell (PEMFC) is complex to describe, this paper, considering the fractional order characteristics of PEMFC system, proposes an optimization based fractional order time domain subspace identification method, and establishes a fractional order state space model of PEMFC. The fractional differential theory is combined with subspace identification method, and Poisson filter is used to filter the input and output data. The weight matrix is introduced to improve the accuracy of identification. Then, a mutation reverse learning adaptive monarch butterfly optimization algorithm (ALMBO) is proposed for the identification of fractional order and other parameters. The mutation reverse learning strategy is introduced into the transfer operator, and the adaptive weight is integrated to improve the optimization accuracy and prevent falling into the local optimal solution. Finally, the simulation results verify the effectiveness of the algorithm, and the identification model can accurately describe the dynamic process of PEMFC.

Key words

proton exchange membrane fuel cell / parameter identification / global optimization / ALMBO

Cite this article

Download Citations
Sun Chengshuo, Qi Zhidong, Ye Weiqin, Shan Liang. RESEARCH ON FRACTIONAL ORDER TIME DOMAIN SUBSPACE MODEL OF PEMFC BASED ON ALMBO ALGORITHM[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 467-474 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0971

References

[1] TALEB M A, GODOY E, BETHOUX O, et al.PEM fuel cell fractional order modeling and identification[J]. IFAC proceedings volumes, 2014, 47(3): 2125-2131.
[2] WANG Z L, YANG D S, ZHANG H G.Stability analysis on a class of nonlinear fractional-order systems[J]. Nonlinear dynamics, 2016, 86(2):1023-1033.
[3] DIVI S, DAS S, UDAY B, et al.Fractional order PID controller design for supply manifold pressure control of proton exchange membrane fuel cell[J]. Chemical product and process modeling, 2019, 14(3): 524-531.
[4] QI Z D, XU S Y, LIANG S, et al.Dynamic thermal modeling of PEMFC based on fractional order theory[J].Control and decision, 2015, 15(5): 1078-1081.
[5] TSIRIMOKOU G, PSYCHALINOS C, ELWAKIL A S, et al.Experimental verification of on-chip CMOS fractional-order capacitor emulators[J]. Electronics letters, 2016, 52(15): 1298-1300.
[6] XUE C S, QI Z D.Research on PEMFC fractional impedance characteristic modeling[C]// Proceedings of the 30th China Conference on Control and Decision Making, Shenyang, China, 2018.
[7] LENG B Y, QI Z D, XU S Y, et al.Research on electrical characteristics of state space modeling and parameter identifying of PEMFC[C]//34th Chinese Control Conference, Hangzhou, China, 2015.
[8] BIAN H J, QI Z D, XU S Y, et al.Research on PEMFC fractional model based on an improved genetic algorithm[C]//34th Chinese Control Conference, Hangzhou, China, 2015.
[9] 胡聪. PEMFC分数阶状态空间建模与自适应控制研究[D]. 南京: 南京理工大学, 2017.
HU C.Research on PEMFC fractional order state space modeling and adaptive control[D]. Nanjing: Nanjing University of Science and Technology , 2017.
[10] TALEB M A, GODOY E, BETHOUX O, et al.Frequential identification of a proton exchange membrane fuel cell (PEMFC) fractional order model[J]. IFAC proceedings volumes, 2014, 21(3): 214-220.
[11] 戚志东, 何永康, 戈卫平, 等. 质子交换膜燃料电池的分数阶非线性状态空间模型研究[J]. 控制理论与应用, 2019, 36(3): 86-93.
QI Z D, HE Y K, GE W P, et al.Study on fractional nonlinear state space model of proton exchange membrane fuel cell[J]. Control theory and applications, 2019, 36(3): 86-93.
[12] 王依柔, 张达敏, 徐航. 基于自适应扰动的疯狂蝴蝶算法[J]. 计算机应用研究, 2020, 349(11): 82-86.
WANG Y R, ZHANG D M, XU H.Crazy butterfly algorithm based on adaptive disturbance[J]. Computer application research, 2020, 349(11): 82-86.
[13] 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学报, 2021, 3(1): 1-10.
LYU X, MU X D, ZHANG J, et al.Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 3(1): 1-10.
[14] WANG G G,DEB S, CUI Z H.Monarch butterfly optimization[J]. Neural computing and applications, 2019, 31(7): 512-533.
[15] JAO T C, SASABE T, UEMURA S, et al.Temperature and humidification effect on mass transfer of PEMFC via EIS and soft X-ray measurement[J]. ECS transactions, 2016, 75(14): 179-188.
[16] SHAN J, LIN R, CHEN X D, et al.EIS and local resolved current density distribution analysis on effects of MPL on PEMFC performance at varied humidification[J]. International journal of heat and mass transfer, 2018, 127(15): 1076-1083.
[17] ARVIND Y, BOGGAVARAPU B V, SATYAVARA P, et al.Application of artificial neural network and genetic algorithm based artificial neural network models for river flow prediction[J]. Revued′intelligence artificielle, 2020, 34(6): 421-431.
[18] AHANDANI M A, ALAVI-RAD H.Opposition-based learning in shuffled frog leaping: an application for parameter identification[J]. Information sciences, 2015, 291(1): 19-42.
PDF(2075 KB)

Accesses

Citation

Detail

Sections
Recommended

/