FAULT DIAGNOSIS OF WIND TURBINE GEARBOX BASED ON IMPROVED EMPIRICAL WAVELET TRANSFORM AND FRACTAL FEATURE SET

Sun Kang, Jin Jiangtao, Li Chun, Ye Kehua, Xu Zifei

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 310-319.

PDF(13384 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(13384 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 310-319. DOI: 10.19912/j.0254-0096.tynxb.2021-0980

FAULT DIAGNOSIS OF WIND TURBINE GEARBOX BASED ON IMPROVED EMPIRICAL WAVELET TRANSFORM AND FRACTAL FEATURE SET

  • Sun Kang1, Jin Jiangtao1, Li Chun1,2, Ye Kehua1, Xu Zifei1
Author information +
History +

Abstract

Since the vibration response signal of wind turbine gearbox is highly nonlinear and non-stationary, under the premise of considering the adaptive adjustment of the average amplitude to the average spectral negative entropy of time and frequency domain component weight, the improved continuous average spectral negentropy (ICASN) method is proposed to reflect the detail complexity characteristics of signals. Moreover, ICASN is introduced into Empirical Wavelet Transform (EWT) to replace Fourier spectrum as the basis of frequency band division. According to ICASN-EWT decomposition of vibration signals, the feature components are screened based on Improved Average Spectral Negentropy (IASN) to eliminate signal redundancy and noise influence. Then, the fractal characteristics of each sensitive component are analyzed and the high dimensional feature set is constructed. Meanwhile, Manifold Learning (ML) is used for dimension reduction. Moreover, take fractal Gaussian Noise Grey Wolf Optimizer (FGNGWO) to optimize the key parameters of Support Vector Machine (SVM). The vector set after dimensionality reduction is input into the optimized support vector machine for fault identification and diagnosis, and the accuracy is up to 100%.

Key words

wind turbines / gearbox / fault detection / support vector machines / empirical wavelet transform / improved continuous average spectral negentropy / fractal Gaussian noise grey wolf optimizer

Cite this article

Download Citations
Sun Kang, Jin Jiangtao, Li Chun, Ye Kehua, Xu Zifei. FAULT DIAGNOSIS OF WIND TURBINE GEARBOX BASED ON IMPROVED EMPIRICAL WAVELET TRANSFORM AND FRACTAL FEATURE SET[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 310-319 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0980

References

[1] 全球能源互联网发展合作组织. 中国2030年前碳达峰研究报告[R]. 北京: 中国碳达峰碳中和成果发布暨研讨会, 2021.
Global Energy Internet Development Cooperation Organization. Research report on carbon peak before 2030 in China[R]. Beijing: Publication and Seminar on Carbon Neutrality in China, 2021.
[2] 全球能源互联网发展合作组织. 中国2060年前碳中和研究报告[R]. 北京: 中国碳达峰碳中和成果发布暨研讨会, 2021.
Global Energy Internet Development Cooperation Organization. Research report on carbon neutrality before 2060 in China[R]. Beijing: Publication and Seminar on Carbon Neutrality in China, 2021.
[3] GWEC. Global wind report-annual market update 2021[R]. Washington: Global Wind Energy Council, 2021.
[4] ARTIGAO E, MARTÍN-MARTÍNEZ A, HONRUBIA-ESCRIBANO A, et al. Wind turbine reliability: a comprehensive review towards effective condition monitoring development[J]. Applied energy, 2018, 228: 1569-1583.
[5] QU J X, ZHANG Z S, GONG T.A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion[J]. Neurocomputing, 2016, 171: 837-853.
[6] STETCO A, DINMOHAMMADI F, ZHAO X Y, et al.Machine learning methods for wind turbine condition monitoring: a review[J]. Renewable energy, 2019, 133: 620-635.
[7] 隋文涛, 张丹, WANG W.基于EMD和MKD的滚动轴承故障诊断方法[J]. 振动与冲击, 2015, 34(9): 55-59, 64.
SUI W T, ZHANG D, WANG W.Fault diagnosis of rolling element bearings based on EMD and MKD[J]. Journal of vibration and shock, 2015, 34(9): 55-59, 64.
[8] 王志坚, 韩振南, 刘邱祖, 等. 基于MED-EEMD的滚动轴承微弱故障特征提取[J]. 农业工程学报, 2014,30(23): 70-78.
WANG Z J, HAN Z N, LIU Q Z, et al.Weak fault dragnosis for rolling element bearing based on MED-EEMD[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(23): 70-78.
[9] GILLES J.Empirical wavelet transform[J]. IEEE transactions on signal processing, 2013, 61(16): 3999-4010.
[10] BREGLER C, OMOHUNDRO S M.Nonlinear manifold learning for visual speech recognition[C]//Proceedings of the Fifth International Conference on Computer Vision, IEEE, Springer, Berlin, Heidelberg, Germany, 1995: 583-588.
[11] SCHÖLKOPF B, SMOLA A, MÜLLER K R. Kernel principal component analysis[C]//International Conference on Artificial Neural Networks, Springer, Berlin, Heidelberg, Germany, 1997: 583-588.
[12] ANTONI J.The infogram: entropic evidence of the signature of repetitive transients[J]. Mechanical systems and signal processing, 2016, 74: 73-94.
[13] FENG Z P, MA H Q, ZUO M J.Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis[J]. Journal of sound and vibration, 2017, 410: 124-150.
[14] UGWIRI M A, CARRATU M, PACIELLO V, et al.Benefits of enhanced techniques combining negentropy, spectral correlation and kurtogram for bearing fault diagnosis[J]. Measurement, 2021, 185: 110013.
[15] GILLES J.Empirical wavelet transform[J]. IEEE transactions on signal processing, 2013, 61(16): 3999-4010.
[16] 徐敏, 黄昭毅, 虞和济. 设备故障诊断手册[M]. 西安: 西安交通大学出版社, 2011: 12-19.
XU M, HUANG Z Y, YU H J.Equipment fault diagnosis manual[M]. Xi’an: Xi’an Jiaotong University Press, 2011: 12-19.
[17] ROLO-NARANJO A, MONTESINO-OTERO M E. A method for the correlation dimension estimation for on-line condition monitoring of large rotating machinery[J]. Mechanical systems and signal processing, 2005, 19(5): 939-954.
[18] GRASSBERGER P, PROCACCIA I.Characterization of strange attractors[J]. Physical review letters, 1983, 50(5): 346-349.
[19] 哈特·戴维, 华南理工大学分形课题组, 译. 重分形:理论及应用[M]. 北京: 科学出版社, 2012.
DAVID H.Refractals: theory and application[M]. Beijing: Science Press, 2012.
[20] MIRJALILI S, MIRJALILI S M, LEWIS A.Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61.
[21] NREL. Wind turbine gearbox vibration condition monitoring benchmarking datasets[R]. Colorado: National Renewable Energy Laboratory, 2012.
[22] ZHANG Z Y, ZHA H Y.Principal manifolds and nonlinear dimension reduction via local tangent space alignment[J]. SIAM journal on entific computing, 2003, 26(1): 313-338.
[23] ROWEIS S T, SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
[24] BELKIN M, NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural computation, 2003, 15(6): 1373-1396.
[25] TENENBAUM J B, SILVA V D, LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
PDF(13384 KB)

Accesses

Citation

Detail

Sections
Recommended

/