STUDY ON SECOND-ORDER VORTEX-INDUCED VIBRATION CHARACTERISTICS OF HIGH-FLEXIBLE TOWERS OF WIND TURBINES

Tao Tao, Long Kai, Bai Xinjian, Liu Yongqian

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 498-503.

PDF(1557 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1557 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 498-503. DOI: 10.19912/j.0254-0096.tynxb.2021-0993

STUDY ON SECOND-ORDER VORTEX-INDUCED VIBRATION CHARACTERISTICS OF HIGH-FLEXIBLE TOWERS OF WIND TURBINES

  • Tao Tao1,2, Long Kai1,2, Bai Xinjian1,2, Liu Yongqian1,2
Author information +
History +

Abstract

The existing wind turbine vortex-vibration researohes usually focus on the first-order vortex-induced vibration of the rigid tower regardless of the top mass instead of ignoring. The second-order vortex-induced vibration of the high-flexible tower with top mass is neglected. This study mainly concentrates on the second-order vortex-induced vibration characteristics of wind turbine high flexible towers. Firstly, the wind turbine model containing a high-flexible tower is established using GH Bladed software. The natural frequencies and vibration modes of the high-flexible tower are obtained through modal analysis. Then, the inertial force at each height under the altion of the second-order vortex-induced vibration is calculated according to the relevant standards. Finally, taking 2 MW high-flexible tower wind turbine as the reasearch object, the second-order vortex-induced vibration characteristics are analyzed and compared with the counterpart in the fundamental vortex-induced pattern. The results reveal that the influence of the first-order vortex-induced vibration the tower strength can be ignored. However, the second-order vortex-induced vibration may easily lead to insufficient tower strength, which is a potential risk of tower collapse.

Key words

wind turbines / towers / fatigue damage / vortex-induced vibration / ultimate strength

Cite this article

Download Citations
Tao Tao, Long Kai, Bai Xinjian, Liu Yongqian. STUDY ON SECOND-ORDER VORTEX-INDUCED VIBRATION CHARACTERISTICS OF HIGH-FLEXIBLE TOWERS OF WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 498-503 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0993

References

[1] LIU Y Q, QIAO Y H, HAN S, et al.Rotor equivalent wind speed calculation method based on equivalent power considering wind shear and tower shadow[J]. Renewable energy, 2021, 172: 882-896.
[2] 乔延辉. 计及风速时空变化规律的风电功率预测方法研究[D]. 北京: 华北电力大学, 2019.
QIAO Y H.Research on wind power prediction based on wind speed temporal and spatial variation[D]. Beijing: North China Electric Power University, 2019.
[3] 付德义, 张晓东, 王瑞明, 等. 特定场址条件下风电机组载荷适应性评估[J]. 太阳能学报, 2021, 42(6): 425-431.
FU D Y, ZHANG X D, WANG R M, et al.Wind turbine load adaptability assessment under specific site conditions[J]. Acta energiae solaris sinica, 2021, 42(6): 425-431.
[4] 杜静, 杨瑞伟, 李东坡, 等. MW级风电机组钢筋混凝土塔筒稳定性分析[J]. 太阳能学报, 2021, 42(3): 9-14.
DU J, YANG R W, LI D P, et al.Stability analysis of reinforced concrete tower of MW grade wind turbine[J]. Acta energiae solaris sinica, 2021, 42(3): 9-14.
[5] 陈逸杰, 张艳江, 林成欢, 等. 风电预应力混凝土-钢混合塔架设计优化研究[J]. 太阳能学报, 2021, 42(3): 121-127.
CHEN Y J, ZHANG Y J, LIN C H, et al.Optimization and analysis on prestressed concrete-steel hybrid wind turbine tower[J]. Acta energiae solaris sinica, 2021, 42(3): 121-127.
[6] 管彩文, 田常录. 风力机塔架模态分析方法与比较[J]. 太阳能学报, 2021, 42(4): 473-478.
GUAN C W, TIAN C L.Modal analysis method and comparison for wind turbine tower[J]. Acta energiae solaris sinica, 2021, 42(4): 473-478.
[7] LOPATINSKI V.Vortex induced vibrations in high-rise buildings[D]. Aalto: Aalto University, 2020.
[8] KRAUTHAMMER T.A numerical study of wind-induced tower vibrations[J]. Computers & structures, 1987, 26(1): 233-241.
[9] MESKELL C, PELLEGRINO A.Vortex shedding lock-in due to pitching oscillation of a wind turbine blade section at high angles of attack[J]. International journal of aerospace engineering, 2019, 2019: 6919505.
[10] 李德源, 刘胜祥, 黄小华. 大型风力机筒式塔架涡致振动的数值分析[J]. 太阳能学报, 2008, 29(11): 1432-1437.
LI D Y, LIU S X, HUANG X H.Numerical analysis of vortex-induced vibration of the large scale wind turbine cylindrical tower[J]. Acta energiae solaris sinica, 2008, 29(11): 1432-1437.
[11] 龙凯, 贾娇. 大型水平轴风力机塔筒涡激振动焊缝疲劳分析[J]. 太阳能学报, 2015, 36(10): 2455-2459.
LONG K, JIA J.Analysis of fatigue damage of tower of large scale horizontal axis wind turbine by wind-induced transverse vibration[J]. Acta energiae solaris sinica, 2015, 36(10): 2455-2459.
[12] VIRÉ A, DERKSEN A, FOLKERSMA M, et al.Two-dimensional numerical simulations of vortex-induced vibrations for a cylinder in conditions representative of wind turbine towers[J]. Wind energy science, 2020, 5: 793-806.
[13] LIVANOS D.Investigation of vortex induced vibrations on wind turbine towers[D]. Delft: Delft University of Technology, 2018.
[14] 陈朝富. MW级风力机塔筒强度分析[D]. 上海: 上海交通大学, 2017.
CHEN C F.Strength analysis of MW wind turbine tower[D]. Shanghai: Shanghai Jiao Tong University, 2017.
[15] 龙凯, 毛晓娥. 大型水平轴风力机塔筒焊缝强度分析[J]. 太阳能学报, 2014, 35(10): 1981-1987.
LONG K, MAO X E.Analysis of weld strength in turbine tower of HAWT[J]. Acta energiae solaris sinica, 2014, 35(10): 1981-1987.
[16] 赵荣博, 孙鹏文, 郜佳佳, 等. 风力机塔筒门洞焊缝多轴疲劳寿命预测[J]. 太阳能学报, 2017, 38(5): 1415-1420.
ZHAO R B, SUN P W, GAO J J, et al.Multi-axial fatigue life prediction of wind turbine tower door's welding[J]. Acta energiae solaris sinica, 2017, 38(5): 1415-1420.
[17] LIU Y Q, TAO T, ZHAO X Y, et al.Support vector regression-based fatigue damage assessment method for wind turbine nacelle chassis[J]. Structures, 2021, 33: 759-768.
PDF(1557 KB)

Accesses

Citation

Detail

Sections
Recommended

/