DYNAMIC CHARACTERISTICS OF LARGE MONOPILE OFFSHORE WIND TURBINE UNDER WIND-ICE INTERACTION

Zhang Lixian, Shi Wei, Li Xin, Chai Wei, Zhen Chunbo

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 59-66.

PDF(2171 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2171 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 59-66. DOI: 10.19912/j.0254-0096.tynxb.2021-1001

DYNAMIC CHARACTERISTICS OF LARGE MONOPILE OFFSHORE WIND TURBINE UNDER WIND-ICE INTERACTION

  • Zhang Lixian1, Shi Wei1, Li Xin1, Chai Wei2, Zhen Chunbo3
Author information +
History +

Abstract

Considering the combined effect of wind load and ice load on large single-pile offshore wind turbine, based on IEA 15 MW offshore wind turbine, coupled numerical model under the ice and wind condition is developed using the Openfast code. This paper carries out the dynamic analysis of a large monopile offshore wind turbine under the wind and ice interaction and explores the influence of different loading time durations, ice models, and different damage evaluation methods on the characteristics of the structural responses. The calculation results show that there is a great difference between the calculation results of the numerical calculation models with different ice loads on the tower and the mud surface line. The fatigue damage rate at the mudline is higher than that at the tower base, which should be paid more attention to. When the traditional load combination method is used to calculate the fatigue damage rate of wind turbine structure, the fatigue damage rate is smaller than that under the combined action of wind and ice, and the fatigue damage is underestimated. Therefore, the coupled wind-ice-structure analysis is recommended to estimate the fatigue damage for large monopile offshore wind turbines.

Key words

offshore wind turbines / supporting structure / numerical analysis / ice induced vibration / fatigue damage

Cite this article

Download Citations
Zhang Lixian, Shi Wei, Li Xin, Chai Wei, Zhen Chunbo. DYNAMIC CHARACTERISTICS OF LARGE MONOPILE OFFSHORE WIND TURBINE UNDER WIND-ICE INTERACTION[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 59-66 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1001

References

[1] 刘伟民, 刘蕾, 陈凤云, 等. 中国海洋可再生能源技术进展[J]. 科技导报, 2020, 38(14): 27-39.
LIU W M, LIU L, CHEN F Y, et al.Technical progress of marine renewable energy in China[J]. Science and technology review, 2020, 38(14): 27-39.
[2] 葛晨, 乔继红. 提振全球气候治理雄心的中国担当[J]. 人民周刊, 2020, 127(23): 13.
GE C, QIAO J H.China’s role in boosting global climate governance ambition[J]. People’s weekly, 2020, 127(23): 13.
[3] 季顺迎, 王安良, 王宇新, 等. 渤海海冰现场监测的数字图像技术及其应用[J]. 海洋学报, 2011, 33(4):79-87.
JI S Y, WANG A L, WANG Y X, et al.Digital image technology and its application for the sea ice field observation in the Bohai Sea[J]. Acta oceanologica sinica, 2011, 33(4): 79-87.
[4] GWEC. Global wind report[R]. Brussels: GWEC, 2021:17-21.
[5] 张大勇, 王国军, 王帅飞, 等. 冰区海上风电基础的抗冰性能分析[J]. 船舶力学, 2018, 175(5): 101-113.
ZHANG D Y, WANG G J, WANG S F, et al.Ice-resistant performance analysis of offshore wind turbine foundation in ice zone[J]. Journal of ship mechanics, 2018, 175(5):101-113.
[6] 朱本瑞, 孙超, 黄焱. 海上单桩风机结构冰激振动响应分析[J]. 土木工程学报, 2021, 54(1): 88-96.
ZHU B R, SUN C, HUANG Y.Ice-induced vibration response analysis of monopile offshore wind turbine[J]. China civil engineering journal, 2021, 54(1): 88-96.
[7] 黄焱, 马玉贤, 罗金平, 等. 渤海海域单柱三桩式海上风电结构冰激振动分析[J]. 海洋工程, 2016, 34(5): 1-10.
HUANG Y, MA Y X, LUO J P, et al.Analyses on ice induced vibrations of a tripod piled offshore wind turbine structure in Bohai Sea[J]. The ocean engineering, 2016,34(5): 1-10.
[8] 周旋. 海上风机基础的冰荷载计算[C]//第十五届中国海洋(岸)工程学术讨论会论文集(中), 太原, 中国, 2011.
ZHOU X.Ice load calculation of offshore wind turbine foundation[C]//Proceedings of the 15th China Ocean (Shore) Engineering Symposium (middle), Taiyuan, China, 2011.
[9] SHI W, TAN X, GAO Z, et al.Numerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditions[J]. Cold regions science and technology, 2016, 123: 121-139.
[10] HEINONEN J, RISSANEN S.Coupled-crushing analysis of a sea ice-wind turbine interaction-feasibility study of FAST simulation software[J]. Ships & offshore structures, 2017, 12(8): 1-8.
[11] 叶柯华, 李春, 王渊博, 等. 湍流风与浮冰联合作用下近海风力机动力学响应[J]. 热能动力工程, 2019, 34(9): 123-131.
YE K H, LI C, WANG Y B, et al.Dynamic response of offshore wind turbine under the combined load of turbulent wind and floating ice[J]. Journal of engineering for thermal energy and power, 2019, 34(9): 123-131.
[12] YE K H, LI C, YANG Y B, et al.Research on influence of ice-induced vibration on offshore wind turbines[J]. Journal of renewable and sustainable energy, 2019, 11(3): 33301.
[13] 杨冬宝, 高俊松, 刘建平, 等. 基于DEM-FEM耦合方法的海上风机结构冰激振动分析[J]. 力学学报, 2021, 53(3): 682-692.
YANG D B, GAO J S, LIU J P, et al.Analysis of ice-inducted structure vibration of offshore wind turbines based on DEM-FEM coupled method[J]. Chinese journal of theoretical and applied mechanics, 2021, 53(3): 682-692.
[14] 王国军, 张大勇, 王帅飞, 等. 寒区海上风电基础锥体动冰荷载[J]. 科学技术与工程, 2020, 20(31): 12820-12826.
WANG G J, ZHANG D Y, WANG S F, et al.Dynamic ice load of conical offshore wind turbine foundation in cold region[J]. Science technology and engineering, 2020, 20(31): 12820-12826.
[15] JONKMAN J M, BUHL JR M L. FAST user’s guide[R].NREL/EL-500-38230, 2005.
[16] JONKMAN J M, HAYMAN G J, JONKMAN B J, et al.AeroDyn v15 user’s guide and theory manual[R]. NREL Draft Report, 2015.
[17] MATLOCK H, DAWKINS W P, PANAK J J.Analytical model for ice-structure interaction[J]. Journal of the engineering mechanics division, 1971, 97(4): 1083-1092.
[18] KARR D G, TROESCH A W, WINGATE W C.Nonlinear dynamic response of a simple ice-structure interaction model[J]. Journal of offshore mechanics & arctic engineering, 1993, 115(4): 246-252.
[19] ASHBY M F, PALMER A C, THOULESS M, et al.Nonsimultaneous failure and ice loads on arctic structures[C]//Offshore Technology Conference, Houston, TX, USA, 1986.
[20] HAYMAN G J, BUHL JR M.Mlife users guide for version 1.00[R/OL]. https://www.nrel.gov/wind/nwtsc/assets/pdfs/mlife-user.pedf,CO, 2012, 74(75): 112.
[21] GAERTNER E, RINKER J, SETHURAMAN L, et al.Definition of the IEA 15-megawatt offshore reference wind[R]. NREL/TP-5000-75698, 2020.
[22] 岳前进. 渤海海冰研究及其工程应用中期研究报告:国家自然科学基金重点项目报告[R]. 大连: 大连理工大学, 1999: 1-17.
YUE Q J.Mid-term research report on Bohai Sea ice research and its engineering application: key project report of National Natural Science Foundation of China [R]. Dalian: Dalian University of technology, 1999: 1-17.
PDF(2171 KB)

Accesses

Citation

Detail

Sections
Recommended

/