NEW TYPE CAPACITTIVE VOLTAGE ACTIVE DAMPING STRATEGY FOR LCL GRID-CONNECTED INVERTER

Yang Ming, Song Mingyang, Zhang Guopeng, Xie Bao

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 399-408.

PDF(2746 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2746 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 399-408. DOI: 10.19912/j.0254-0096.tynxb.2021-1052

NEW TYPE CAPACITTIVE VOLTAGE ACTIVE DAMPING STRATEGY FOR LCL GRID-CONNECTED INVERTER

  • Yang Ming1, Song Mingyang1, Zhang Guopeng1, Xie Bao2
Author information +
History +

Abstract

Under weak grid conditions, the digital control delay will cause the virtual impedance to show negative resistance and cannot achieve the damping effect. Therefore, the grid-connected inverter cannot operate stably under the change of grid impedance, and its robustness is seriously threatened. In response to the above problems, this paper proposes a bilinear positive feedback active damping strategy to expand the effective damping zone of the system. To save the cost the sensors, it is optimized as a capacitive voltage positive feedback active damping strategy, adding appropriate positive feedback damping links at both ends of the capacitor voltage, so that the effective damping area of the system is expanded to (0, 0.477fs). The analysis results show that this strategy makes the grid-connected inverter always have good robustness under weak grid conditions, and the system has good stability even when the resonance frequency is equal to 1/6 of the sampling frequency. Finally, a three-phase LCL grid-connected inverter is taken as an example to carry out experimental verification, and the experimental results verify the correctness of the strategy.

Key words

digital control / weak grid / grid-connected inverter / active damping / effective damping zone

Cite this article

Download Citations
Yang Ming, Song Mingyang, Zhang Guopeng, Xie Bao. NEW TYPE CAPACITTIVE VOLTAGE ACTIVE DAMPING STRATEGY FOR LCL GRID-CONNECTED INVERTER[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 399-408 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1052

References

[1] 周林, 张密, 居秀丽, 等. 电网阻抗对大型并网光伏系统稳定性影响分析[J]. 中国电机工程学报, 2013, 33(34): 34-41.
ZHOU L, ZHANG M, JU X L, et al.Stability analysis of large-scale photovoltaic plants due to grid impedances[J]. Proceedings of the CSEE, 2013, 33(34): 34-41.
[2] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999-5008.
ZHOU X X, LU Z X, LIU Y M, et al.Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008.
[3] 杨明. 大型光伏电站逆变器并网控制策略及稳定性分析[D]. 重庆: 重庆大学, 2014.
YANG M.Grid-connected control strategy and stability analysis of large-scale photovoltaic power plant inverters[D]. Chongqing: Chongqing University, 2014.
[4] 苗丽芳, 王乐媛, 曹斌, 等. 弱电网下电网电压前馈控制分布式逆变系统的谐振阻尼特性分析[J]. 高电压技术, 2020, 46(10): 3521-3529.
MIAO L F, WANG Y Y, CAO B, et al.Resonance damping characteristic analysis of distributed inverter-based system with grid voltage feed-forward control in weak grid[J]. High voltage engineering, 2020, 46(10): 3521-3529.
[5] 李春鹏, 孙绍华. 数字控制对并网逆变系统稳定性和动态性能的影响[J]. 电力自动化设备, 2012, 32(3): 23-27.
LI C P, SUN S H.Influence of digital control on stability and dynamic performance of grid-connected inverter system[J]. Electric power automation equipment, 2012, 32(3): 23-27.
[6] 杨东升, 阮新波, 吴恒. 提高LCL型并网逆变器对弱电网适应能力的虚拟阻抗方法[J]. 中国电机工程学报, 2014, 34(15): 2327-2335.
YANG D S, RUAN X B, WU H.A virtual impedance method to improve the performance of LCL-type grid-connected inverters under weak grid conditions[J]. Proceedings of the CSEE, 2014, 34(15): 2327-2335.
[7] 邹常跃, 刘邦银, 段善旭, 等. 并网逆变器中数字控制延时对系统稳定性的影响及其优化设计[J]. 中国电机工程学报, 2015, 35(2): 411-417.
ZOU C Y, LIU B Y, DUAN S X, et al.Influence of delay on system stability and its optimization in grid-connected inverters[J]. Proceedings of the CSEE, 2015, 35(2): 411-417.
[8] 王林, 孙鹏菊, 薛统宇, 等. 一种提高LCL型并网逆变器电流控制性能的延时补偿方法[J]. 中国电机工程学报, 2020, 40(19): 6320-6329.
WANG L, SUN P J, XUE T Y, et al.A delay compensation method to improve the current control performance of the LCL-type grid-connected inverter[J]. Proceedings of the CSEE, 2020, 40(19): 6320-6329.
[9] CHEN C, XIONG J,WAN Z Q, et al.A time delay compensation method based on area equivalence for active damping of an LCL-type converter[J]. IEEE transactions on power electronics, 2017, 32(1): 762-772.
[10] ZOU C Y, LIU B Y, DUAN S X, et al.Influence of delay on system stability and delay optimization of grid-connected inverters with LCL filter[J]. IEEE transactions on industrial informatics, 2014, 10(3): 1775-1784.
[11] 周乐明, 罗安, 陈燕东, 等. LCL型并网逆变器的鲁棒并网电流反馈有源阻尼控制方法[J]. 中国电机工程学报, 2016, 36(10): 2742-2752.
ZHOU L M, LUO A, CHEN Y D, et al.A robust grid-current-feedback-active-damping method for LCL-type grid-connected inverters[J]. Proceedings of the CSEE, 2016, 36(10): 2742-2752.
[12] LI X Q, WU X J, GENG Y W, et al.Wide damping region for LCL-type grid-connected inverter with an improved capacitor-current-feedback method[J]. IEEE transactions on power electronics, 2015, 30(9): 5247-5259.
[13] 孙鹏菊, 周雒维, 杜雄. 具有延时补偿的占空比预测数字控制算法[J]. 电工技术学报, 2010, 25(5): 123-128.
SUN P J, ZHOU L W, DU X.Duty ratio prediction control method with time delay compensation[J]. Transactions of China Electrotechnical Society, 2010, 25(5): 123-128.
[14] 谢文浩, 刘一琦, 王建赜, 等. 提高LCL型并网逆变器阻抗重塑控制鲁棒性的延时补偿方法[J]. 电工技术学报, 2017, 32(增刊1): 178-185.
XIE W H, LIU Y Q, WANG J Z, et al.A delay compensation method of the grid-connected inverter with LCL filter to improve robustness of the impedance shaping control[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 178-185.
[15] 杨东升, 阮新波, 吴恒. 提高LCL型并网逆变器电流控制性能的双采样模式实时运算方法[J]. 中国电机工程学报, 2015, 35(6): 1445-1454.
YANG D S, RUAN X B, WU H.A real-time computation method with dual sampling modes to improve the current control performance of the LCL-type grid-connected inverter[J]. Proceedings of the CSEE, 2015, 35(6): 1445-1454.
[16] 潘冬华, 阮新波, 王学华, 等. 提高LCL型并网逆变器鲁棒性的电容电流即时反馈有源阻尼方法[J]. 中国电机工程学报, 2013, 33(18): 2-10.
PAN D H, RUAN X B, WANG X H, et al.A capacitor-current real-time feedback active damping method for improving robustness of the LCL-type grid-connected inverter[J]. Proceedings of the CSEE, 2013, 33(18): 2-10.
[17] PAN D H, RUAN X B, BAO C, et al.Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter[J]. IEEE transactions on power electronics, 2014, 29(7): 3414-3427.
[18] 曹子恒, 肖先勇, 马俊鹏, 等. 提高LCL型并网逆变器鲁棒性的改进型电容电流反馈有源阻尼策略[J]. 高电压技术, 2020, 46(11): 3781-3789.
CAO Z H, XIAO X Y, MA J P, et al.Novel capacitor current feedback active damping strategy for enhancing robustness of LCL-type grid-connected inverters[J]. High voltage engineering, 2020, 46(11): 3781-3789.
[19] 方天治, 黄淳, 陈乃铭, 等. 一种提高弱电网下LCL型并网逆变器鲁棒性的相位超前补偿策略[J]. 电工技术学报, 2018, 33(20): 4813-4822.
FANG T Z, HUANG C, CHEN N M, et al.A phase-lead compensation strategy on enhancing robustness of LCL-type grid-tied inverters under weak grid conditions[J]. Transactions of the China Electrotechnical Society, 2018, 33(20): 4813-4822.
[20] 郑堃, 周林, 龙贵欣, 等. 一种针对数字控制下光伏并网逆变器的陷波器滞后补偿方法[J]. 中国电机工程学报, 2019, 39(6): 1749-1757.
ZHENG K, ZHOU L, LONG G X, et al.A lag compensation method based on notch filter for PV grid-connected inverter under digital control[J]. Proceedings of the CSEE, 2019, 39(6): 1749-1757.
[21] LI X Q, FANG J Y, TANG Y, et al.Capacitor-voltage feedforward with full delay compensation to improve weak grids adaptability of LCL-filtered grid-connected converters for distributed generation systems[J]. IEEE transactions on power electronics, 2018, 33(1): 749-764.
[22] 耿乙文, 齐亚文, 董文明, 等. 一种改进型并网电流反馈有源阻尼方法[J]. 中国电机工程学报, 2018, 38(18): 5557-5567.
GENG Y W, QI Y W, DONG W M, et al.An active damping method with improved grid current feedback[J]. Proceedings of the CSEE, 2018, 38(18): 5557-5567.
[23] 潘冬华, 阮新波, 王学华, 等. 增强LCL型并网逆变器对电网阻抗鲁棒性的控制参数设计[J]. 中国电机工程学报, 2015, 35(10): 2558-2566.
PAN D H, RUAN X B, WANG X H, et al.Controller design for LCL-type grid-connected inverter to achieve high robustness against grid-impedance variation[J]. Proceedings of the CSEE, 2015, 35(10): 2558-2566.
PDF(2746 KB)

Accesses

Citation

Detail

Sections
Recommended

/