CONTROLAND STABILITY ANALYSIS OF GRID-CONNECTED INVERTER UNDER LOW SWITCHING FREQUENCY

Huang Lulu, Gao Bo

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 332-340.

PDF(3571 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3571 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 332-340. DOI: 10.19912/j.0254-0096.tynxb.2021-1055

CONTROLAND STABILITY ANALYSIS OF GRID-CONNECTED INVERTER UNDER LOW SWITCHING FREQUENCY

  • Huang Lulu, Gao Bo
Author information +
History +

Abstract

The stability of damping resonance of grid-side current feedback control and inverter-side current feedback control of LCL grid-connected inverter is analyzed. From the standpoint of the dominant poles, the positions of the two conjugate complex roots at low switching frequency determine the direction of the root locus, which in turn affects the stability of the system. The existing active damping methods are proposed independently, and there is a lack of systematic synthesis in order to propose novel active damping control methods. The essence of the damping resonance can be obtained by analyzing the stability control of grid-connected inverters. Digital time-delay is essentially a series correction, revealing that the delay changes the system phase characteristics. The phase lag of the digital delay is beneficial to system stability in some cases, but it depends on resonance frequency and the position of current sensor which is utilized for feedback variable. The paper designs the current controller parameters in the discrete domain, and gives a method to determine controller parameters quickly and exactly from the point of view of engineering practicality. The theoretical analysis is validated by simulation and experimental results.

Key words

LCL filter / current regulator / grid side current feedback / inverter side current feedback / digital time-delay / phase lag

Cite this article

Download Citations
Huang Lulu, Gao Bo. CONTROLAND STABILITY ANALYSIS OF GRID-CONNECTED INVERTER UNDER LOW SWITCHING FREQUENCY[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 332-340 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1055

References

[1] 陈杰, 陈新, 冯志阳, 等. 微网系统并网/孤岛运行模式无缝切换控制策略[J]. 中国电机工程学报, 2014, 34(19): 3089-3097.
CHEN J, CHEN X, FENG Z Y, et al.A control strategy of seamless transfer between grid-connected and islanding operation for microgrid[J]. Proceeding of the CSEE, 2014, 34(19): 3089-3097.
[2] 胡彬, 吴超, 年珩, 等. 薄弱电网下新能源设备并网锁相同步方式综述[J]. 电力自动化设备, 2020, 40(9): 26-34, 41.
HU B, WU C, NIAN H, et al.Overview of phase-locked synchronization methods of renewable energy equipment in weak and distorted grid[J]. Electric power automation equipment, 2020, 40(9): 26-34, 41.
[3] 祁琪, 姜齐荣, 许彦平. 智能配电网柔性互联研究现状及发展趋势[J]. 电网技术, 2020, 44(12): 4664-4676.
QI Q,JIANG Q R, XU Y P.Research status and development prospect of flexible interconnection for smart distribution networks[J]. Power system technology, 2020, 44(12): 4664-4676.
[4] 鲍陈磊, 阮新波, 王学华, 等. 基于PI调节器和电容电流反馈有源阻尼的LCL型并网变换器闭环参数设计[J]. 中国电机工程学报, 2012, 32(25): 133-142.
BAO C L, RUAN X B, WANG X H, et al.Design of grid-connected inverters with LCL filter based on PI regulator and capacitor current feedback active damping[J]. Proceeding of the CSEE, 2012, 32(25): 133-142.
[5] HOLMES D G, LIPO T A, MCGRATH B P, et al.Optimized design of stationary frame three phase AC current regulators[J]. IEEE transactions on power electronics, 2009, 24(11): 2417-2426.
[6] 许津铭. 分布式发电系统中LCL滤波并网变换器运行鲁棒性研究[D]. 南京: 南京航空航天大学, 2017.
XU J M.Research on robustness of grid-connected LCL-filtered inverters for distributed power generation systems[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
[7] 贺诗明, 熊健. 基于牛顿插值的LCL型并网变换器机侧电流反馈延时补偿策略[J]. 电网技术, 2020, 44(12): 4766-4772.
HE S M, XIONG J.Time delay compensation based on newton interpolation for inverter-side current feedback of LCL-type grid-tied inverter[J]. Power system technology, 2020, 44(12): 4766-4772.
[8] 张志坚, 荆龙, 赵宇明, 等. 低开关频率对并网变换器控制环节的影响及补偿方法[J]. 电力系统自动化, 2020, 44(17): 111-119.
ZHANG Z J, JING L, ZHAO Y M,et al.Effect of low switching frequency on control link of grid-connected inverter and compensation method[J]. Automation of electric power systems, 2020, 44(17): 111-119.
[9] HE J W, LI Y W.Generalized closed-loop control schemes with embedded virtual impedance for voltage source converters with LC or LCL filters[J]. IEEE transactions on power electronics, 2012, 27(4): 1850-1861.
[10] PARKER S G, MCGRATH B P, HOLMES D G,et al.Regions of active damping control for LCL filters[J]. IEEE transactions on industrial applications, 2014, 50(1): 424-432.
[11] WANG J G, YAN J D, JIANG L, et al.Dealy-dependent stability of single-loop controlled grid-connected inverters with LCL filters[J]. IEEE transactions on power electronics, 2016, 31(1): 743-757.
[12] 许津铭, 谢少军, 张斌峰. 分布式发电系统中LCL滤波并网变换器电流控制研究综述[J]. 中国电机工程学报, 2015, 35(16): 4153-4166.
XU J M, XIE S J, ZHANG B F.Overview of current control techniques for grid-connected inverters with LCL filters in distributed power generation systems[J]. Proceeding of the CSEE, 2015, 35(16): 4153-4166.
[13] DANNEHL J, LISERRE M, FUCHS F M.Filter-based active damping of voltage source converters with LCL filter[J]. IEEE transactions on industrial electronics, 2011, 58(8): 3623-3633.
[14] 李小强, 蒋苏, 聂文娟, 等. 电感磁芯软饱和特性约束下三相LCL型并网变换器单环控制稳定性分析与设计[J]. 中国电机工程学报, 2021, 41(24): 8585-8600.
LI X Q, JIANG S, NIE W J, et al.Stability analysis and design of LCL-type grid-connected converters with single-loop control under the constraint of soft saturation characteristics of inductor magnetic core[J]. Proceeding of the CSEE, 2021, 41(24): 8585-8600.
[15] LIU Z,LIU J J,LIU Z,et al.A study of virtual resistor-based active damping alternatives for LCL resonance in grid-connected voltage source inverters[J]. IEEE transactions on power electronics, 2020, 35(1): 247-262.
[16] PARKER S G.Discrete time current regulation of grid connected converters with LCL filters[D]. Melbourne: RMIT University, 2014.
[17] HE J W, LI Y W.Hybrid voltage and current control approach for DG-grid interfacing converters with LCL filters[J]. IEEE transactions on industrial electronics, 2013, 60(5): 1797-1809.
[18] YEPES A G, FREIJEDO F D, DOVAL-GANDOY J, et al.Effects of discretization methods on the performance of resonant controllers[J]. IEEE transactions on power electronics, 2010, 25(7): 1692-1712.
[19] ZHANG X, CHEN P, YU C Z, et al.Study of current control strategy based on multisampling for high-power grid-connected inverters with an LCL filter[J]. IEEE transactions on powerelectronics, 2017, 32(7): 5023-5034.
[20] OPPENHEIM A V, WILLSKY A S, HAMID NAWAB S.Signals and systems[M]. Second Edition. Beijing: Publishing House of Electronics Industry, 2020: 832-834.
[21] LU M H, AL-DURRA A, MUYEEN S M, et al.Benchmarking of stability and robustness against grid impedance variation for LCL-filtered grid-interfacing inverters[J]. IEEE transactions on power electronics, 2018, 33(10): 9033-9046.
[22] 徐海亮, 廖自力, 贺益康. 比例-谐振控制器在PWM变换器应用中的几个要点[J]. 电力系统自动化, 2015, 39(18): 151-159.
XU H L, LIAO Z L, HE Y K.Key points of proportional-resonant controller applied for PWM converters[J]. Automation of electric power systems, 2015, 39(18): 151-159.
PDF(3571 KB)

Accesses

Citation

Detail

Sections
Recommended

/