STUDY ON MOTION RESPONSE AND POWER CAPTURE CHARACTERISTICS OF HINGED MULTIPLE FLOATING BODIES WAVE ENERGY CONVERTER

Wang Wensheng, Jiang Jiaqiang, Sheng Songwei

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 218-223.

PDF(1757 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1757 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 218-223. DOI: 10.19912/j.0254-0096.tynxb.2021-1062

STUDY ON MOTION RESPONSE AND POWER CAPTURE CHARACTERISTICS OF HINGED MULTIPLE FLOATING BODIES WAVE ENERGY CONVERTER

  • Wang Wensheng1,2, Jiang Jiaqiang1,2, Sheng Songwei1,2
Author information +
History +

Abstract

Based on the linear potential flow theory, the hydrodynamic coefficients of the multi-floating hinged wave energy convertor “Starfish” are calculated by using the total mode method. Then, the kinematic equation of multi-floating rigid body was established based on vector mechanics, and the dynamic response is calculated based on geometric constraints to obtain the optimal capture efficiency and the optimal load damping. Finally, the capture efficiency of the multi-floating body of the Starfish wave energy device is compared and analyzed. The results show that the design of starfish wave energy device with multiple floating bodies can broaden the optimal capture bandwidth and improve the capture efficiency of the device. Compared with the way to capture wave energy by the forward and backward waves, in the case of small period, the capture efficiency of forward-facing absorbing wave body is relatively higher. With the increase of period, the capture efficiency of forward-facing absorbing wave body starts to decrease, and the capture efficiency of back-facing absorbing wave body starts to increase. In the case of maximum period, the capture efficiency of forward-facing absorbing wave body and back-facing absorbing wave body tend to be consistent and close to zero.

Key words

wave energy / multi-floating body / capture efficiency / Starfish WEC

Cite this article

Download Citations
Wang Wensheng, Jiang Jiaqiang, Sheng Songwei. STUDY ON MOTION RESPONSE AND POWER CAPTURE CHARACTERISTICS OF HINGED MULTIPLE FLOATING BODIES WAVE ENERGY CONVERTER[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 218-223 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1062

References

[1] 游亚戈, 李伟, 刘伟民, 等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010, 34(14): 1-12.
YOU Y G, LI W, LIU W M, et al.Development status and perspective of marine energy conversion systems[J]. Automation of electric power systems, 2010, 34(14): 1-12.
[2] 郑崇伟, 贾本凯, 郭随平, 等. 全球海域波浪能资源储量分析[J]. 资源科学, 2013, 35(8): 1611-1616.
ZHENG C W, JIA B K, GUO S P, et al.Wave energy resource storage assessment in global ocean[J]. Resources science, 2013, 35(8): 1611-1616.
[3] 闻斌, 薛彦广, 张芳苒, 等. 中国海波浪能资源分析[J]. 海洋预报, 2013, 30(2): 36-41.
WEN B, XUE Y G, ZHANG F R, et al.Numerical simulation of wave energy resources in the China Sea[J]. Marine forecasts, 2013, 30(2): 36-41.
[4] 游亚戈, 马玉久. 海洋能在海洋环境测量标上的应用[J]. 气象水文海洋仪器, 2003, 9(3): 32-35.
YOU Y G, MA Y J.The sea energy source application in the sea environment[J]. Meteorological, hydrological and marine instruments, 2003, 9(3): 32-35.
[5] 王文胜, 游亚戈, 盛松伟, 等. 鹰式二号波浪能装置的频域动态响应计算与负载优化设计[J]. 太阳能学报, 2021, 42(2): 289-294.
WANG W S, YOU Y G, SHENG S W, et al.Frequency domain dynamic response calculation and hydraulic damping optimal design of wave energy conversion Sharp EagleⅡ[J]. Acta energiae solaris sinica, 2021, 42(2): 289-294.
[6] 匡晓峰, 赵战华, 王智峰, 等. 南海风浪环境统计特性分析方法研究[J]. 中国造船, 2018, 59(1): 99-109.
KUANG X F, ZHAO Z H, WANG Z F, et al.Study on analytic method of the statistic characteristic for the wind seas at the South China Sea[J]. Shipbuilding of China, 2018, 59(1): 99-109.
[7] 姜波, 丁杰, 武贺, 等. 渤海、黄海、东海波浪能资源评估[J]. 太阳能学报, 2017, 38(6): 1711-1716.
JIANG B, DING J, WU H, et al.Wave energy resource assessment along Bohai Sea,Yellow Sea and East China Sea[J]. Acta energiae solaris sinica, 2017, 38(6): 1711-1716.
[8] 张松, 刘富铀, 张滨, 等. 我国近海波浪能资源调查与评估[J]. 海洋技术, 2012, 31(3): 79-85.
ZHANG S, LIU F Y, ZHANG B, et al.Investigation and assessment of wave energy in coastal area of China[J]. Ocean technology, 2012, 31(3): 79-85.
[9] 王文胜, 盛松伟, 叶寅, 等. 鹰式一号波浪能装置频域运动分析与优化设计[J]. 海洋技术学报, 2018, 37(2): 101-106.
WANG W S, SHENG S W, YE Y, et al.Motion computation and optimal design of wave energy converter “Sharp Eagle Ⅰ” in frequency domain[J]. Journal of ocean technology, 2018, 37(2): 101-106.
[10] 盛松伟, 张亚群, 王坤林, 等. “鹰式一号”波浪能发电装置研究[J]. 船舶工程, 2015, 37(9): 104-108.
SHENG S W, ZHANG Y Q, WANG K L, et al.Research on wave energy converter Sharp Eagle I[J]. Ship engineering, 2015, 37(9): 104-108.
[11] KIM B W, HONG S Y, KYOUNG J H, et al.Investigation on wave reduction performances of floating hing-linked breakwater[J]. Journal of ocean science and technology, 2006, 3(1): 13-22.
[12] GOU Y, TENG B, NING D Z.Interaction effects wave and two connected floating bodies[J]. Engineering science, 2004, 6(7): 75-80.
[13] 盛松伟, 张亚群, 游亚戈, 等. 大万山波浪能示范场波浪能资源测试分析[J]. 太阳能学报, 2019, 40(2): 462-465.
SHENG S W, ZHANG Y Q, YOU Y G, et al.Testing and analysis of wave energy resources in Dawanshan wave energy demonstration field[J]. Acta energiae solaris sinica, 2019, 40(2): 462-465.
PDF(1757 KB)

Accesses

Citation

Detail

Sections
Recommended

/