THERMAL ECONOMIC ANALYSIS OF THERMOELECTRIC GENERATION SYSTEM WITH DIFFERENT CYCLE FLOW

Wang Bo, Yang Tongyun, Zhang Yutong, Bian Yongning, Hirofumi Arima

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 22-29.

PDF(3630 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3630 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 22-29. DOI: 10.19912/j.0254-0096.tynxb.2021-1069

THERMAL ECONOMIC ANALYSIS OF THERMOELECTRIC GENERATION SYSTEM WITH DIFFERENT CYCLE FLOW

  • Wang Bo1, Yang Tongyun1, Zhang Yutong1, Bian Yongning1, Hirofumi Arima2
Author information +
History +

Abstract

This study utilized simulation method, through the modeling of Rankine cycle, Kalinacycle and Uehara cycle, the differences in thermal efficiency(η) and leveled cost of energy (CLCOE) between different cycle processes were analyzed under different heat source temperature conditions. Meanwhile, the effects of evaporation temperature and turbine inlet pressure on thermal-economic performance in different cycle systems were also explored. The results show that Kalina cycle has highest thermal efficiency in each temperature condition of heat source, but its economic performance is poor. In low temperature heat source, the CLCOE of Rankine cycle with pure ammonia working fluid is the lowest under the same conditions. In design, Rankine cycle should choose saturated steam state, as far as possible to increase the turbine inlet pressure and reduce the evaporation superheat. Instead, in high temperature heat source, the CLCOE of Uehara cycle is the lowest. Moreover, there is a deviation of the turbine inlet pressure corresponding to the minimum CLCOE and the maximum thermal efficiency of Kalina cycle and Uehara cycle. Designed according to the minimum CLCOE principle at this point, more power generation and less equipment cost can be obtained. Therefore, thermal-economic performance of different cycles under different heat source temperature conditions should be considered in cycle flow design.

Key words

thermal energy / thermoelectric generation / economic analysis / Rankine cycle / LCOE

Cite this article

Download Citations
Wang Bo, Yang Tongyun, Zhang Yutong, Bian Yongning, Hirofumi Arima. THERMAL ECONOMIC ANALYSIS OF THERMOELECTRIC GENERATION SYSTEM WITH DIFFERENT CYCLE FLOW[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 22-29 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1069

References

[1] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-459.
WANG G L, ZHANG W, LIANG J Y, et al.Evaluation of geothermal resources potential in China[J]. Acta geoscientica sinica, 2017, 38(4): 449-459.
[2] 连红奎, 李艳, 束光阳子, 等. 我国工业余热回收利用技术综述[J]. 节能技术, 2011, 29(2): 123-128, 133.
LIAN H K, LI Y, SHU G Y Z, et al. An overview of domestic technologies for waste heat utilization[J]. Energy conservation technology, 2011, 29(2): 123-128, 133.
[3] 中国节能协会太阳能专业委员会. 2020中国太阳能热利用行业运行状况报告[R].
Special Committee of Solar Energy of China Energy Conversation Association. Report on the development of solar thermal industry of China(2020)[R].
[4] 施伟勇, 王传崑, 沈家法. 中国的海洋能资源及其开发前景展望[J]. 太阳能学报, 2011, 32(6): 913-923.
SHI W Y, WANG C K, SHEN J F.Utilization and prospect of ocean energy resource in China[J]. Acta energiae solaris sinca, 2011, 32(6): 913-923.
[5] 张凯. 非共沸混合工质有机朗肯循环工质筛选及热经济性研究[D]. 北京: 华北电力大学, 2019.
ZHANG K.Research on selection and thermoeconomic analysis of zeotropic mixtures for organic Rankine cycle[D]. Beijing: North China Electric Power University, 2019.
[6] WANG M, JING R, ZHANG H R, et al.An innovative organic Rankine cycle (ORC) based ocean thermal energy conversion (OTEC) system with performance simulation and multi-objective optimization[J]. Applied thermal engineering, 2018, 145: 743-754.
[7] SUN F M, IKEGAMI Y, ARIMA H, et al.Performance analysis of the low-temperature solar-boosted power generation system-part I: comparison between Kalina solar system and Rankine solar system[J]. Journal of solar energy engineering, 2013, 135(1): 011006
[8] WANG J F, YAN Z Q, ZHOU E M, et al.Parametric analysis and optimization of a Kalina cycle driven by solar energy[J]. Applied thermal engineering, 2013, 50(1): 408-415.
[9] 吴双应, 汪菲, 肖兰. 基于低温烟气余热发电的Kalina循环热经济性能分析[J]. 化工学报, 2017, 68(3): 1170-1177.
WU S Y, WANG F, XIAO L.Thermo-economic performance analysis of Kalina cycle based on low temperature flue gas waste heat power generation[J]. CIESC journal, 2017, 68(3): 1170-1177.
[10] MATSUDA Y, YOSHITAKE T, SUGI T, et al.Construction of a static model for power generation of OTEC plant using Uehara cycle based on experimental data[J]. Journal of marine science and engineering, 2018, 6(1): 3.
[11] 陈凤云. 海洋温差能发电装置热力性能与综合利用研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
CHEN F Y.Study on thermal performance and comprehensive utilization of ocean thermal energy conversion[D]. Harbin: Harbin Engineering University, 2016.
[12] BERNARDONI C, BINOTTI M, GIOSTRI A.Techno-economic analysis of closed OTEC cycles for power generation[J]. Renewable energy, 2019, 132: 1018-1033.
[13] OGRISICK S.Integration of Kalina cycle in a combined heat and power plant,a case study[J]. Applied thermal engineering, 2009, 29(14): 2843-2848.
[14] KÖSE Ö, KOÇ Y, YAĞLI H. Energy,exergy,economy and environmental (4E) analysis and optimization of single, dual and triple configurations of the power systems:Rankine cycle/Kalina cycle, driven by a gas turbine[J]. Energy conversion and management, 2021, 227: 113604.
[15] TURTON R, BAILIE R, WHITING W, et al.Analysis,synthesis and design of chemical processes[M]. New York: Pearson Education, 2018.
[16] 孙兰义. 换热器工艺设计[M]. 2版. 北京: 中国石化出版社, 2020.
SUN L Y.Thermal design of heat exchangers[M]. 2nd edition. Beijing: China Petrochemical Press, 2020.
[17] GOTO S, MOTOSHIMA Y, SUGI T, et al.Construction of simulation model for OTEC plant using Uehara cycle[J]. Electrical engineering in Japan, 2011, 176(2): 272-282.
PDF(3630 KB)

Accesses

Citation

Detail

Sections
Recommended

/