OPTIMIZATION STRATEGIES FOR HYBRID ENERGY STORAGE COMPENSATION CONSIDERING PREDICTION ERROR ANALYSIS

Gao Wei, Xie Lirong, Lu Haopeng, Ma Wei

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 254-259.

PDF(1718 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1718 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (2) : 254-259. DOI: 10.19912/j.0254-0096.tynxb.2021-1174

OPTIMIZATION STRATEGIES FOR HYBRID ENERGY STORAGE COMPENSATION CONSIDERING PREDICTION ERROR ANALYSIS

  • Gao Wei1, Xie Lirong1, Lu Haopeng1, Ma Wei1,2
Author information +
History +

Abstract

In order to improve the wind farm prediction power accuracy, for wind farm and hybrid energy storage, a hybrid energy storage compensation scheme based on prediction information is proposed. Firstly, the probabilistic statistical analysis is carried out based on the prediction error, and the stratified compensation strategy of wind power prediction error is proposed, and the allowable error domain and confidence interval compensation domain are formulated for compensating the prediction error. Then, the corresponding energy storage compensation scheme is given for the prediction errors of different error layers by using energy storage, decomposing the prediction errors outside the area to be compensated based on wavelet packet decomposition, determining the critical point as the target allocation value of power-based energy storage and energy-based energy storage by the unbalanced power DFT frequency division method, and making secondary correction for the load state overrun problem by adaptive fuzzy control. Finally, a wind farm in Xinjiang is used as an example for simulation analysis, and the results show that the proposed strategy can effectively reduce the wind power prediction error.

Key words

wind power / wind power forecasting error / energy storage / power distribution / confidence interval compensation domain / state of charge

Cite this article

Download Citations
Gao Wei, Xie Lirong, Lu Haopeng, Ma Wei. OPTIMIZATION STRATEGIES FOR HYBRID ENERGY STORAGE COMPENSATION CONSIDERING PREDICTION ERROR ANALYSIS[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 254-259 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1174

References

[1] ZHANG Y L, SHEN S Q, MATHIEU J.Distributi-onally robust chance-constrained optimal power flow with uncertain renewables and uncertain reserves provided by loads[J]. IEEE transactions on power systems, 2017, 32(2): 1378-1388.
[2] 田德, 陈忠雷, 邓英. 考虑预测误差的综合能源系统优化调度模型[J]. 太阳能学报, 2019, 40(7): 1890-1896.
TIAN D, CHEN Z L, DENG Y.Integrated energy system optimal dispatching model considering prediction errors[J]. Acta energiae solaris sinica, 2019, 40(7): 1890-1896.
[3] ZHOU A P, YANG M, WANG Z Y, et al.A linear solution method of generalized robust chance constrained real-time dispatch[J]. IEEE transactions on power systems, 2018, 33(6): 7313-7316.
[4] 王森, 蔺红. 基于变系数ES的混合储能平抑风电波动控制策略[J]. 太阳能学报, 2019, 40(11): 3204-3212.
WANG S, LIN H.Control strategy of hybrid energy storage to stabilize wind power fluctuation based on variable coefficient exponential smoothing method[J]. Acta energiae solaris sinica, 2019, 40(11): 3204-3212.
[5] 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J]. 电工技术学报, 2017, 32(21): 103-111.
YE R L, GUO Z Z, LIU R Y, et al.Wind speed and wind power prediction for wind farms based on wavelet packet decomposition and improved Elman neural network[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 103-111.
[6] 叶林, 任成, 赵永宁, 等. 超短期风电功率预测误差数值特性分层分析方法[J]. 中国电机工程学报, 2016, 36(3): 692-700.
YE L, REN C, ZHAO Y N, et al.Stratification analysis approach of numerical characteristics for ultra-short-term wind power forecasting error[J]. Proceedings of the CSEE, 2016, 36(3): 692-700.
[7] 吴晓刚, 孙荣富, 乔颖, 等. 基于风电场功率特性的风电预测误差分布估计[J]. 电网技术, 2017, 41(6): 1801-1807.
WU X G, SUN R F, QIAO Y, et al.Estimation of error distribution for wind power prediction based on power curves of wind farms[J]. Power system technology, 2017, 41(6): 1801-1807.
[8] 陆秋瑜, 胡伟, 闵勇, 等. 考虑时间相关性的风储系统多模式协调优化策略[J]. 电力系统自动化, 2015, 39(2): 6-12.
LU Q Y, HU W, MIN Y, et al.A multi-modal coordinated optimization strategy of wind power and energy storage system considering temporal dependence[J]. Automation of electric power systems, 2015, 39(2): 6-12.
[9] 闫鹤鸣, 李相俊, 麻秀范, 等. 基于超短期风电预测功率的储能系统跟踪风电计划出力控制方法[J]. 电网技术, 2015, 39(2): 432-439.
YAN H M, LI X J, MA X F, et al.Wind power output schedule tracking control method of energy storage system based on ultra-short term wind power prediction[J]. Power system technology, 2015, 39(2): 432-439.
[10] 茆美琴, 洪嘉玲, 张榴晨. 考虑光伏出力预测误差修正的储能优化配置方法[J]. 太阳能学报, 2021, 42(2): 410-416.
MAO M Q, HONG J L, ZHANG L C.Energy storage optimization configuration method considering conditional forecast error correction[J]. Acta energiae solaris sinica, 2021, 42(2): 410-416.
[11] 何川, 刘天琪, 胡晓通, 等. 基于超短期风电预测和混合储能的风电爬坡优化控制[J]. 电网技术, 2017, 41(3): 782-790.
HE C, LIU T Q, HU X T, et al.Optimal control of wind ramp based on very short-term wind forecast and hybrid ESS[J]. Power system technology, 2017, 41(3): 782-790.
[12] 石涛, 张斌, 晁勤, 等. 兼顾平抑风电波动和补偿预测误差的混合储能容量经济配比与优化控制[J]. 电网技术, 2016, 40(2): 477-483.
SHI T, ZHANG B, CHAO Q, et al.Economic storage ratio and optimal control of hybrid energy capacity combining stabilized wind power fluctuations with compensated predictive errors[J]. Power system technology, 2016, 40(2): 477-483.
[13] 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于置信区间估计及储能装置优化配置的风电场可靠出力研究[J]. 电力自动化设备, 2017, 37(5): 85-91.
YE R L, GUO Z Z, LIU R Y, et al.Reliable power output based on confidence interval estimation and optimal ESS configuration of wind farm[J]. Electric power automation equipment, 2017, 37(5): 85-91.
PDF(1718 KB)

Accesses

Citation

Detail

Sections
Recommended

/