RESEARCH ON APPLICABILITY OF CLEAR-SKY MODELS IN NORTHERN CHINA—TAKING SOME REGIONS IN HEBEI AND GANSU AS EXAMPLES

Liu Xiao, Yang Liwei, Hua Jiajia, Gao Xiaoqing, Jia Dongyu

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 1-7.

PDF(1453 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1453 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 1-7. DOI: 10.19912/j.0254-0096.tynxb.2021-1189

RESEARCH ON APPLICABILITY OF CLEAR-SKY MODELS IN NORTHERN CHINA—TAKING SOME REGIONS IN HEBEI AND GANSU AS EXAMPLES

  • Liu Xiao1,2, Yang Liwei3, Hua Jiajia4, Gao Xiaoqing3, Jia Dongyu5
Author information +
History +

Abstract

In order to study the applicability of clear-sky models in northern China, this study uses 1-minute global horizontal solar irradiance and MERRA-2 reanalysis data from seven stations in Northern China, selects the Reno method to filter clear-sky periods, evaluates the performance of seven clear-sky models by eleven statistics, and adopts the principal component analysis method to rank the models. The results, ranked in descending order (from high to low) are as follows: MAC2, REST2V5, BIRD, INEICHEN, IQBAL-C, sSOLIS, ESRA. The MAC2 and REST2V5 models have high accuracy in calculating solar radiation in clear sky and have good applicability in northern regions.

Key words

global horizontal irradiance / clear-sky model / MERRA-2 reanalysis / Northern China

Cite this article

Download Citations
Liu Xiao, Yang Liwei, Hua Jiajia, Gao Xiaoqing, Jia Dongyu. RESEARCH ON APPLICABILITY OF CLEAR-SKY MODELS IN NORTHERN CHINA—TAKING SOME REGIONS IN HEBEI AND GANSU AS EXAMPLES[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 1-7 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1189

References

[1] ZHANG H L, XIN X Z, LI L, et al.Estimating global solar radiation using a hybrid parametric model from MODIS data over the Tibetan Plateau[J]. Solar energy, 2015, 112: 373-382.
[2] GAIRAA K, KHELLAF A, MESSLEM Y, et al.Estimation of the daily global solar radiation based on Box-Jenkins and ANN models: a combined approach[J]. Renewable and sustainable energy reviews, 2016, 57: 238-249.
[3] SUN X X, BRIGHT J M, GUEYMARD C A, et al.Worldwide performance assessment of 75 global clear-sky irradiance models using principal component analysis[J]. Renewable and sustainable energy reviews, 2019, 111: 550-570.
[4] ANTONANZAS-TORRES F, URRACA R, POLO J, et al.Clear sky solar irradiance models: a review of seventy models[J]. Renewable and sustainable energy reviews, 2019, 107: 374-387.
[5] ENGERER N A, MILLS F P.Validating nine clear sky radiation models in Australia[J]. Solar energy, 2015, 120: 9-24.
[6] MABASA B, LYSKO M D, TAZVINGA H, et al.The performance assessment of six global horizontal irradiance clear sky models in six climatological regions in South Africa[J]. Energies, 2021, 14(9): 2583-2606.
[7] INEICHEN P.Validation of models that estimate the clear sky global and beam solar irradiance[J]. Solar energy, 2016, 132: 332-344.
[8] GELARO R, MCCARTY W, SUÁREZ M J, et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J]. Journal of climate, 2017, 30(14): 5419-5454.
[9] BRIGHT J M, BAI X Y, ZHANG Y, et al.Irradpy: python package for MERRA-2 download, extraction and usage for clear-sky irradiance modelling[J]. Solar energy, 2020, 199: 685-693.
[10] SUN X X, BRIGHT J M, GUEYMARD C A, et al.Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis[J]. Renewable and sustainable energy reviews, 2021, 135: 110087.
[11] BADESCU V, GUEYMARD C A, CHEVAL S, et al.Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania[J]. Renewable energy, 2013, 55: 85-103.
[12] GUEYMARD C A.Clear-sky irradiance predictions for solar resource mapping and large-scale applications: improved validation methodology and detailed performance analysis of 18 broadband radiative models[J]. Solar energy, 2012, 86(8): 2145-2169.
[13] GUEYMARD C A.REST2: high-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation-validation with a benchmark dataset[J]. Solar energy, 2008, 82(3): 272-285.
[14] GUEYMARD C A.Direct solar transmittance and irradiance predictions with broadband models. Part I: detailed theoretical performance assessment[J]. Solar energy, 2003, 74(5): 355-379.
[15] GUEYMARD C A.Direct solar transmittance and irradiance predictions with broadband models. Part II: validation with high-quality measurements[J]. Solar energy, 2003, 74(5): 381-395.
[16] IQBAL M.An introduction to solar radiation[M]. Amsterdam: Elsevier, 2012.
[17] BIRD R E, HULSTROM R L.Simplified clear sky model for direct and diffuse insolation on horizontal surfaces[R]. Solar Energy Research Inst., Golden, CO(USA), 1981.
[18] DAVIES J A, MCKAY D C.Estimating solar irradiance and components[J]. Solar energy, 1982, 29(1): 55-64.
[19] MUELLER R W, DAGESTAD K F, INEICHEN P, et al.Rethinking satellite-based solar irradiance modelling: the SOLIS clear-sky module[J]. Remote sensing of environment, 2004, 91(2): 160-174.
[20] INEICHEN P.A broadband simplified version of the Solis clear sky model[J]. Solar energy, 2008, 82(8): 758-762.
[21] RIGOLLIER C, BAUER O, WALD L.On the clear sky model of the ESRA—European Solar Radiation Atlas—with respect to the Heliosat method[J]. Solar energy, 2000, 68(1): 33-48.
[22] INEICHEN P, PEREZ R.A new airmass independent formulation for the Linke turbidity coefficient[J]. Solar energy, 2002, 73(3): 151-157.
[23] GUEYMARD C A, BRIGHT J M, LINGFORS D, et al.A posteriori clear-sky identification methods in solar irradiance time series: review and preliminary validation using sky imagers[J]. Renewable and sustainable energy reviews, 2019, 109: 412-427.
[24] RENO M J, HANSEN C W.Identification of periods of clear sky irradiance in time series of GHI measurements[J]. Renewable energy, 2016, 90: 520-531.
[25] GUEYMARD C A.A review of validation methodologies and statistical performance indicators for modeled solar radiation data: towards a better bankability of solar projects[J]. Renewable and sustainable energy reviews, 2014, 39: 1024-1034.
[26] WILKS D S.Statistical methods in the atmospheric sciences[M]. New York: Academic Press, 2011.
[27] 刘潇, 薛莹, 纪毓鹏, 等. 基于主成分分析法的黄河口及其邻近水域水质评价[J]. 中国环境科学, 2015, 35(10): 3187-3192.
LIU X, XUE Y, JI Y P, et al.An assessment of water quality in the Yellow River estuary and its adjacent waters based on principal component analysis[J]. China environmental science, 2015, 35(10): 3187-3192.
[28] 吴澎, 贾朝爽, 范苏仪, 等. 樱桃品种果实品质因子主成分分析及模糊综合评价[J]. 农业工程学报, 2018, 34(17): 291-300.
WU P, JIA C S, FAN S Y, et al.Principal component analysis and fuzzy comprehensive evaluation of fruit quality in cultivars of cherry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 291-300.
[29] 成珂, 孙琦琦, 马晓瑶. 基于主成分回归分析的气象因子对光伏发电量的影响[J].太阳能学报, 2021, 42(2):403-409.
CHENG K, SUN Q Q, MA X Y.Influence of meteorological factors on photovoltaic power generation based on principal component regression analysis[J]. Acta energiae solaris sinica, 2021, 42(2): 403-409.
PDF(1453 KB)

Accesses

Citation

Detail

Sections
Recommended

/