RESEARCH OF COUPLING MECHANISMS OF OFFSHORE WIND TURBINES WITH PILE FOUNDATION FLEXIBILITIES UNDER EARTHQUAKE, WIND AND WAVE LOAD

Liu Yingzhou, Wang Wenhua, Li Xin, Song Yuguo, Li Ying

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 67-76.

PDF(2516 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2516 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 67-76. DOI: 10.19912/j.0254-0096.tynxb.2021-1200

RESEARCH OF COUPLING MECHANISMS OF OFFSHORE WIND TURBINES WITH PILE FOUNDATION FLEXIBILITIES UNDER EARTHQUAKE, WIND AND WAVE LOAD

  • Liu Yingzhou1,2, Wang Wenhua1,2, Li Xin1,2, Song Yuguo1,2, Li Ying3
Author information +
History +

Abstract

The coupled governing equation of motion of the offshore wind turbine (OWT) substructure with pile foundation flexibilities is established based on the fully coupled analysis theories of the numerical simulation tool FAST and the linearized theories of pile-soil interactions. Then the coupled numerical model of the rotor nacelle assembly, tower and substructure with the flexible boundary conditions (coupled springs) under earthquake, wind and wave loads is established in the updated FAST v8. Based on the established coupled numerical model, the dynamic responses of OWT under the combined actions of earthquake, wind and wave loads are investigated, and the variations of the structural dynamics and coupling mechanisms owing to the pile foundation flexibilities is highlighted. The results prove the significant influence of the pile foundation flexibilities on the structural dynamic characteristics of OWT. The influence of the second modes on the tower top displacements shall be impaired, while with the overestimated contributions of the high order modes on the bending moments at the mudline, if the pile foundation flexibilities are neglected in the seismic analysis of OWT. Sequentially, the remarkable discrepancies of the OWT seismic responses are observed. Hence, the pile foundation flexibilities should be considered in the design and research of OWTs under earthquakes.

Key words

offshore wind turbines / pile foundations / soil-structure interaction / seismic response / fully coupled analysis model

Cite this article

Download Citations
Liu Yingzhou, Wang Wenhua, Li Xin, Song Yuguo, Li Ying. RESEARCH OF COUPLING MECHANISMS OF OFFSHORE WIND TURBINES WITH PILE FOUNDATION FLEXIBILITIES UNDER EARTHQUAKE, WIND AND WAVE LOAD[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 67-76 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1200

References

[1] 王凯. 考虑流固与桩土耦合的海上风力机支撑结构抗震性能研究[D]. 南京: 东南大学, 2017.
WANG K.The seismic behavior of support structure of offshore wind turbine considering fluid-structure-soil interaction[D]. Nanjing: Southeast University, 2017.
[2] 周润, 李昕, 王文华. 海上风力机基础超单元计算方法对比研究[J]. 水利与建筑工程学报, 2019, 17(3): 132-138.
ZHOU R, LI X, WANG W H.Comparison between offshore wind turbine substructures caculation methods[J]. Journal of water resources and architectural engineering, 2019, 17(3): 132-138.
[3] 刘春玲, 赵法锁, 祁生文, 等. 单桩桩土相互作用及荷载传递机理探讨[J]. 工程地质学报, 2004, 12(S1): 406-410.
LIU C L, ZHAO F S, QI S W, et al.On interaction between single pile and soil and mechanism of load transferring[J]. Journal of engineering geology, 2004, 12(S1): 406-410.
[4] ANASTASOPOULOS I, THEOFILOU M.Hybrid foundation for offshore wind turbines: environmental and seismic loading[J]. Soil dynamics and earthquake engineering, 2016, 80(16): 192-209.
[5] ZAAIJER M.Foundation modelling to assess dynamic behaviour of offshore wind turbines[J]. Applied ocean research, 2006, 28: 45-57.
[6] HӒFELE J, HÜBLER C, GEBHARDT C G, et al. An improved two-step soil-structure interaction modeling method for dynamical analyses of offshore wind turbines[J]. Applied ocean research, 2016, 55: 141-150.
[7] DÜHRKOP J, BORSTEL T, PUCKER T, et al. Influence of soil and structural stiffness on the design of jacket type substructures[J]. Stahlbau, 2016, 85(9): 612-619.
[8] 王明超, 何炎平, 赵永生, 等. 海上风力机桩一土相互作用模型分析[J]. 中国海洋平台, 2014, 29(6): 42-47.
WANG M C, HE Y P, ZHAO Y S, et al.Analysis of pile-soil interaction model of offshore wind turbine[J]. China offshore platform, 2014, 29(6): 42-47.
[9] ZUO H R, BI K, HAO H.Dynamic analyses of operating offshore wind turbines including soil-structure interaction[J]. Engineering structures, 2017, 157: 42-62.
[10] PAGE A M, GUSTAV G, GEIDAR E G, et al.Alternative Numerical pile foundation models for integrated analyses of monopile-based offshore wind turbines[C]//Twenty-sixth International Ocean & Polar Engineering Conference-ISOPE, Rhodes, Greece, 2016: 23-35.
[11] 李炜, 郑永明, 周永. 海上风电基础ANSYS数值模拟[J]. 水运工程, 2010(8): 125-129.
LI W, ZHENG Y M, ZHOU Y.ANSYS numerical simulation of offshore wind power foundation[J]. Water transport engineering, 2010(8): 125-129.
[12] MARKOU A A, KAYNIA A M.Nonlinear soil-pile interaction for offshore wind turbines[J]. Wind energy, 2018, 21(7): 558-574.
[13] ZAAIJER M B.Foundation modelling to assess dynamic behaviour of offshore wind turbines[J]. Applied ocean research, 2006, 28: 45-57.
[14] 席仁强, 许成顺, 杜修力, 等. 风-波浪荷载对海上风机地震响应的影响[J]. 工程力学, 2020, 37(11): 58-68.
XI R Q, XU C S, DU X L, et al.The influence of wind-wave load on the seismic response of offshore wind turbine[J]. Engineering mechanics, 2020, 37(11): 58-68.
[15] 荣维栋, 李洪斌. 近海单桩风力机在波浪地震联合作用下的动力特性分析[J]. 江苏科技大学学报(自然科学版), 2015, 29(1): 27-32.
RONG W D, LI H B.Offshore single-pile fan in wave earthquake combined with offshore single-pile fan in wave earthquake[J]. Journal of Jiangsu University of Science and Technology(natural science edition), 2015, 29(1): 27-32.
[16] ZHANG L W, LI X.Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction[J]. China ocean engineering, 2017, 31(5): 559-566.
[17] 李颖, 王文华, 李昕. 地震作用下固定式海上风力机耦合反应分析[J]. 太阳能学报, 2019, 40(9): 2502-2507.
LI Y, WANG W H, LI X.Coupling response analysis of fixed offshore wind turbine under earthquake[J]. Acta energiae solaris sinica, 2019, 40(9): 2502-2507.
[18] JONKMAN B, JONKMAN J.Guide to changes in FAST v8[R]. National Renewable Energy Laboratory, Golden, USA, 2016.
[19] JONKMAN J, ROBERTSON A, HAYMAN G.SubDyn user’s guide and theory manual[R]. USA, National Renewable Energy Laboratory, Golden, 2013.
[20] 横山幸满. 桩结构物计算方法和计算实例[M]. 北京: 中国铁道出版社, 1983.
Yokoyama. Calculation method and calculation example of pile structure[M]. China: China Railway Press, 1983.
[21] 罗传信. 桩基固定平台变位与内力计算[M]. 天津: 天津大学出版社, 1979.
LUO C X.Displacement and internal force calculation of fixed platform of pile foundation[M]. China: Tianjin University Press, 1979.
[22] JONKMAN J, BUTTERFIELD S, MUSIAL W, SCOTT G.Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Laboratory, Golden, USA, 2009.
[23] JONKMAN J, MUSIAL W.Offshore code comparison collaboration (OC3) for IEA task 23 offshore wind technology and deployment[R]. USA, National Renewable Energy Laboratory, Golden, 2010.
[24] DNV GL.Loads and site conditions for wind turbines[S].DNV GL-ST-0437. DNV, Oslo, Norway, 2016.
[25] JONKMAN B, KILCHER L.TurbSim user’s guide (draft version)[R]. National Renewable Energy Laboratory, Golden, USA, 2012.
[26] JONKMAN J, ROBERTSON A, HAYMAN G.HydroDyn user’s guide and theory manual[R]. USA, National Renewable Energy Laboratory, Golden, 2013.
[27] JONKMAN J M.OpenFAST documentation[R]. Golden, CO: National Renewable Energy Laboratory, 2021.
PDF(2516 KB)

Accesses

Citation

Detail

Sections
Recommended

/