OPTICAL FIBER SENSING AND THICKNESS DISTRIBUTION ESTIMATION OF ICING STATE ON WIND TURBINE BLADES

Li Wei, Wen Fei, Chen Guangrong, Shu Yu, Wang Zhaoli, Zhou Zhihong

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 77-83.

PDF(2274 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2274 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 77-83. DOI: 10.19912/j.0254-0096.tynxb.2021-1208

OPTICAL FIBER SENSING AND THICKNESS DISTRIBUTION ESTIMATION OF ICING STATE ON WIND TURBINE BLADES

  • Li Wei1, Wen Fei2, Chen Guangrong2, Shu Yu2, Wang Zhaoli2, Zhou Zhihong3
Author information +
History +

Abstract

This paper proposes the detection principle of optical fiber sensing ice thickness on wind turbine blades surface and designs a four-channel ice detector with double windows. The distribution of droplet collection rate under different attack angles and droplet sizes is calculated and analyzed by using simulation software platform. The ice detector on the top of its nacelle and three wind turbine blades approximately have the same airflow field to realize the ice thickness measuring and its distribution estimation of three wind turbine blades. The real icing experiment and thickness measuring demonstrated on a wind turbine. The results show that the ice thickness at the leading edge of the blade is maximal and increases gradually along the tip direction. and the difference between the ice detected values and the actual values is within 8%, which can satisfy the application requirements of the ant icing and deicing engineering application on wind turbine blades.

Key words

blades / wind turbines / ice detectors / thickness measuring / anti-icing and deicing

Cite this article

Download Citations
Li Wei, Wen Fei, Chen Guangrong, Shu Yu, Wang Zhaoli, Zhou Zhihong. OPTICAL FIBER SENSING AND THICKNESS DISTRIBUTION ESTIMATION OF ICING STATE ON WIND TURBINE BLADES[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 77-83 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1208

References

[1] 郑建农. 风力发电的发展状况与发展趋势[J]. 电力系统装备, 2018(7): 102-103, 11.
ZHENG J N.The development and development trend of wind power generation[J]. Electric power system equipment, 2018(7): 102-103, 11.
[2] 杨志和, 向哲. 风机叶片结冰故障预测模型及其实现方法[J]. 上海电机学院学报, 2018, 21(7): 7-13.
YANG Z H, XIANG Z.Prediction model of blower blade icing failure and its realization method[J]. Journal of Shanghai Dianji University, 2018, 21(4): 7-13.
[3] 于洪明, 于良峰, 游慧鹏, 等. 风电叶片防冰除冰技术的研究进展[J]. 材料导报, 2016, 30(S1): 220-222, 251.
YU H M, YU L F, YOU H P, et al.Research and development on anti-icing and de-icing technology of wind turbine blade[J]. Materials review, 2016, 30(S1): 220-222, 251.
[4] 何玉林, 李俊, 董明洪, 等. 冰载对风力机性能影响的研究[J]. 太阳能学报, 2012, 33(9): 1490-1496.
HE Y L, LI J, DONG M H, et al.Research on the effect of wind turbine performance under icing conditions[J]. Acta energiae solaris sinica, 2012, 33(9): 1490-1496.
[5] 东乔天, 金哲岩, 杨志刚. 风力机结冰问题研究综述[J]. 机械设计与制造, 2014(10): 269-272.
DONG Q T, JIN Z Y, YANG Z G.A review of icing effect on horizontal axis wind turbine[J]. Machinery design & manufacture, 2014(10): 269-272.
[6] 王伟, 侯学杰, 管晓颖, 等. 风电叶片除冰技术的研究进展[J]. 玻璃钢/复合材料, 2014(1): 90-93, 7.
WANG W, HOU X J, GUAN X Y, et al.Research and development on de-icing technology of wind turbine blade[J]. Fiber reinforced plastics/composites, 2014(1): 90-93, 7.
[7] 黄治娟, 胡志光, 张秀丽, 等. 风机叶片防覆冰技术研究[J]. 华北电力技术, 2014(6): 16-19, 37.
HUANG Z J, HU Z G, ZHANG X L, et al.Research on wind turbine blade antiice coating technology[J]. North China electric power, 2014(6): 16-19, 37.
[8] 许斌, 郭雪怡, 陈洪兵. 基于压电陶瓷的风机叶片模型覆冰主动监测[J]. 压电与声光, 2017, 39(1): 72-76.
XU B, GUO X Y, CHEN H B.Active icing monitoring for wind turbine blade models with PZT technology[J]. Piezoelectrics and acoustooptics, 2017, 39(1): 72-76.
[9] 尹胜生, 叶林, 陈斌, 等. 可识别冰型的光纤结冰传感器[J]. 仪表技术与传感器, 2012(5): 79-81.
YIN S S, YE L, CHEN B, et al.Fiber optical icing sensor for detecting the icing type[J]. Instrument technique and sensor, 2012(5): 79-81.
[10] 刘志军, 叶林, 陈斌, 等. 光纤式结冰传感器微弱信号检测电路的实现[J]. 仪表技术与传感器, 2012(3): 79-81.
LIU Z J, YE L, CHEN B, et al.Realization of lock-in detect circuit on weak signal detection of fiber-optical icing sensor[J]. Instrument technique and sensor, 2012(3): 79-81.
[11] 黄昌尧, 叶林, 葛俊锋, 等. 风力机叶片结冰检测系统的试验研究[J]. 仪表技术与传感器, 2014(6): 86-88, 92.
HUANG C Y, YE L, GE J F, et al.Experimental study of wind turbine blade icing detection system[J]. Instrument technique and sensor, 2014(6): 86-88, 92.
[12] 李薇, 叶林, 张杰, 等. 光纤式结冰传感器的试验研究[J]. 华中科技大学学报(自然科学版), 2009, 37(8):16-18, 22.
LI W, YE L, ZHANG J, et al.Experimental study on the fiber-optic sensor for direct ice detection[J]. Huazhong University of Science & Technology(natural science edition), 2009, 37(8): 16-18, 22.
[13] 易贤, 王开春, 马洪林, 等. 水平轴风力机结冰及其影响计算分析[J]. 太阳能学报, 2014, 35(6): 1052-1058.
YI X, WANG K C, MA H L, et al.Computation of icing and its effect of horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2014, 35(6): 1052-1058.
[14] 胡良权, 陈进格, 沈昕, 等. 风力机叶片结冰水滴收集系数计算[J]. 太阳能学报, 2020, 41(3): 22-26.
HU L Q, CHEN J G, SHEN X, et al.Calculation of water droplets collection efficiency on wind turbine blades[J].Acta energiae solaris sinica, 2020, 41(3): 22-26.
[15] 易贤, 王开春, 马洪林, 等. 大型风力机结冰过程水滴收集率三维计算[J]. 空气动力学报, 2013, 31(6): 745-750.
YI X, WANG K C, MA H L, et al.3-D numerical simulation of droplet collection efficiency in large-scale wind turbine icing[J]. Acta aerodynamica sinica, 2013, 31(6): 745-750.
[16] 易贤, 赵萍, 陈坤, 等. 水平轴风力机结冰探测器设计[J]. 空气动力学学报, 2013, 31(2): 20-25.
YI X, ZHAO P, CHEN K, et al.Method of designing icing prober for an horizontal axis wing turbine[J]. Acta aero dynamica sinica, 2013, 31(2): 20-25.
PDF(2274 KB)

Accesses

Citation

Detail

Sections
Recommended

/