RESEARCH ON COMPRESSION BUCKLING AND POST-BUCKLING BEHAVIOR OF WIND TURBINE BLADE WEB STRUCTURE

Wu Honghui, Shi Kezhong, Xu Jianzhong

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 84-89.

PDF(2226 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2226 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 84-89. DOI: 10.19912/j.0254-0096.tynxb.2021-1212

RESEARCH ON COMPRESSION BUCKLING AND POST-BUCKLING BEHAVIOR OF WIND TURBINE BLADE WEB STRUCTURE

  • Wu Honghui1~4, Shi Kezhong1~4, Xu Jianzhong1~4
Author information +
History +

Abstract

This research further develops and improves the test method of blade component size, experimental and numerical researches have been carried out on the composite web component specimens under compressive loads, and reveal the buckling failure mechanism of the web structure sample from the inside. The research reveals that the composite web specimen has typical buckling characteristics. In the post-buckling stage, the large local deformation of the specimen caused by the yield and crushing of the core material is the main reason that the specimen loses its principal load-bearing capacity. The underlying source of nonlinear structural response and buckling instability of the specimen is the initial flaws created by variables such as uneven material distribution during the production process.

Key words

wind turbine blades / sandwich structures / compression testing / buckling

Cite this article

Download Citations
Wu Honghui, Shi Kezhong, Xu Jianzhong. RESEARCH ON COMPRESSION BUCKLING AND POST-BUCKLING BEHAVIOR OF WIND TURBINE BLADE WEB STRUCTURE[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 84-89 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1212

References

[1] CHEN X, ZHAO W, ZHAO X L, et al.Failure test and finite element simulation of a large wind turbine composite blade under static loading[J]. Energies, 2014, 7(4): 2274-2297.
[2] JENSEN F M, FALZON B G, ANKERSEN J, et al.Structural testing and numerical simulation of a 34m composite wind turbine blade[J]. Composite structures, 2006, 76(1): 52-61.
[3] JENSEN F M, WEAVER R M, CECCHINI L S, et al.The Brazier effect in wind turbine blades and its influence on design[J]. Wind energy, 2012, 15(2): 319-33.
[4] DAMKILDE L, LUND B.A simplified analysis of the brazier effect in composite beams[C]//Proceedings of Nordic Seminar on Computational Mechanics, Göteborg, Sweden, 2009.
[5] ZAROUCHAS D S, MAKRIS A A, SAYER F, et al.Investigations on the mechanical behavior of a wind rotor blade subcomponent[J]. Composites part B, 2012, 43(2): 647-54.
[6] BRANNER K, BERRING P.Compressive strength of thick composite panels[C]//Proceedings of the 32th Risø International Symposium on Materials Science Proceedings, Roskilde, Denmark, 2011.
[7] LIAO C C, ZHAO X L, XU J Z.Blade layers optimization of wind turbines using FAST and improved PSO algorithm[J]. Renewable energy, 2012, 42: 227-233.
[8] LEE H G, PARK J.Static test until structural collapse after fatigue testing of a full-scale wind turbine blade[J]. Composite structures, 2016, 136: 251-257.
[9] STEVENS K A, RICCI R, DAVIES G A O. Buckling and postbuckling of composite structures[J]. Composites, 1995, 26(3): 189-199.
[10] FEATHERSTON C A, WATSON A.Buckling of optimised flat composite plates under shear and in-plane bending[J]. Composites science and technology, 2005, 65(6): 839-853.
[11] LEONG M, OVERGAARD L, THOMSEN O T, et al.Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades[J]. Composite structures, 2012, 94(2): 768-778.
[12] 曹鹏宇,牛康民.夹层结构屈曲模型的拓展及失效判据[J]. 航空学报, 2021, 42(7): 607-617.
CAO P Y, NIU K M.Development of buckling model and failure criterion of sandwich structure[J]. Acta aeronauticaet astronautica sinica, 2021, 42(7): 607-617.
[13] NORLIN P, REUTERLV S.The role of sandwich composites in turbine blades[J]. Reinforced plastics, 2002, 46(3): 32-34.
[14] VEEDU V P, CARLSSON L A.Finite-element buckling analysis of sandwich columns containing a face/core debond[J]. Composite structures, 2005, 69(2): 143-148.
[15] STANLEY G M.Continuum-based shell elements[D]. California: Stanford University, 1985.
[16] DESHPANDE V S, FLECK N A.Multi-axial yield behavior of polymer foams[J]. Acta materialia, 2001, 49(10): 1859-1866.
PDF(2226 KB)

Accesses

Citation

Detail

Sections
Recommended

/