OPTIMIZATION OF LAMINATING PARAMETERS FOR COMPOSITE WIND TURBINE BLADES

Zhang Zhiqiang, Qiao Yinhu, Wang Shuaishuai

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 97-103.

PDF(1959 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1959 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 97-103. DOI: 10.19912/j.0254-0096.tynxb.2021-1217

OPTIMIZATION OF LAMINATING PARAMETERS FOR COMPOSITE WIND TURBINE BLADES

  • Zhang Zhiqiang1,2, Qiao Yinhu1, Wang Shuaishuai2
Author information +
History +

Abstract

The structural performance changes for blades under gravity, centrifugal force and aerodynamic force were considered, and 5 MW wind turbine blades were considered optimisation targets. A mathematical model for wind turbine blade optimisation was developed based on the classical laminate theory. The maximum stress at the laminate interface, maximum blade top displacement and laminate fibre angle were considered the optimisation objective, constraint variable and design variable, respectively. Then, the maximum displacement, Von_Mises stress and Tsai_Wu failure factor were compared and analyzed, and the best scheme was determined. The optimisation substantially reduced the tip displacement, maximum Von_Mises stress and Tsai_Wu failure factor, verifying the effectiveness of the optimisation method.

Key words

wind turbine blades / structural properties / composite materials / optimization / lamination parameter

Cite this article

Download Citations
Zhang Zhiqiang, Qiao Yinhu, Wang Shuaishuai. OPTIMIZATION OF LAMINATING PARAMETERS FOR COMPOSITE WIND TURBINE BLADES[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 97-103 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1217

References

[1] 孙鹏文, 邢哲健, 王慧敏, 等. 复合纤维风力机叶片结构铺层优化设计研究[J]. 太阳能学报, 2015, 36(6): 1410-1417.
SUN P W, XING Z J, WANG H M, et al.Study on optimization design of wind turbine blade with composite fiber lamination structure[J]. Acta energiae solaris sinica, 2015, 36(6): 1410-1417.
[2] 孙鹏文, 侯战华, 岳彩宾, 等. 基于遗传算法的风力机叶片结构铺层厚度优化[J]. 太阳能学报, 2016, 37(6): 1566-1572.
SUN P W, HOU Z H, YUE C B, et al.Ply thichness optimization of wind turbine blade based on genetic Algorithm[J]. Acta energiae solaris sinica, 2016, 37(6):1566-1572.
[3] 张兰挺, 李双荣, 孙鹏文, 等. 铺层参数对风力机叶片结构性能的耦合影响分析[J].太阳能学报, 2018, 39(6): 1768-1774.
ZHANG L T, LI S R, SUN P W, et al.Coupling effects analysis of laminating parameters to structural properties of wind turbine blade[J]. Acta energiae solaris sinica, 2018, 39(6): 1768-1774.
[4] 张兰挺, 邓海龙, 郜佳佳, 等. 铺层参数对风力机叶片静态结构性能的影响分析[J].太阳能学报, 2014, 35(6): 1059-1064.
ZHANG L T, DENG H L, GAO J J, et al.Influence of lamination parameters on static structure performance of wind turbine blade[J]. Acta energiae solaris sinica, 2014, 35(6): 1059-1064.
[5] YANG R, QUAN P.Effect of main spar ply parameters on performance of composite wind turbine blades[J]. Journal of physics: conference series, 2018, 17(1): 235-246.
[6] EMMANUEL N P, PADMANABAN K P, VASUDEVAN D, et al.Stacking sequence optimization of horizontal axis wind turbine blade using FEA, ANN and GA[J]. Structural and multidisciplinary optimization, 2015, 52(4): 791-801.
[7] 谢少军, 潘柏松, 陈栋栋, 等. 基于试验设计法的风机叶片铺层结构分析及优化[J]. 机电工程, 2012, 29(2): 159-162.
XIE S J, PAN B S, CHEN D D, et al.Analysis and optimization of ply schedule for wind turbine blade based on DOE[J]. Journal of mechanical & electrical engineering, 2012, 29(2): 159-162.
[8] 赵清鑫, 张兰挺. 基于径向基神经网络的风力机叶片铺层优化[J]. 太阳能学报, 2020, 41(4): 229-234.
ZHAO Q X, ZHANG L T.Ply parameter optimization of wind turbine blade based on radial basis function netural network[J]. Acta energiae solaris sinica, 2020, 41(4): 229-234.
[9] 冯消冰, 黄海, 王伟. 基于遗传算法的大型风机复合材料叶片根部强度优化设计[J]. 复合材料学报, 2012, 29(5): 196-202.
FENG X B, HUANG H, WANG W.Strength optimization of large wind turbine blade root on the genetic algorithm[J]. Acta materiae compositae sinica, 2012, 29(5): 196-202.
[10] 冯消冰, 黄海, 王伟. 大型风机复合材料叶片铺层优化设计[J]. 玻璃钢/复合材料, 2013(3): 3-7.
FENG X B, HUANG H, WANG W.Ply optimization of composite materials for the blade in wind turbine[J]. Composites science and engineering, 2013(3): 3-7.
[11] ALI A, RISI R D, SEXTOS A.Finite element modeling optimization of wind turbine blades from an earthquake engineering perspective[J]. Engineering structures, 2020, 222: 111105.
[12] JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5 MW reference wind turbine for offshore system development[M]. New York: National Renewable Energy Laboratory, Golden, CO., 2009.
[13] ALBANESI A E, PERALTA I, BRE F, et al.An optimization method based on the evolutionary and topology approaches to reduce the mass of composite wind turbine blades[J]. Structuraland multidisciplinary optimization, 2020, 62: 619-643.
[14] 沈观林,胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006.
SHEN G L, HU G K.Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2006.
[15] POWELL M J D. The BOBYQA algorithm for bound constrained optimization without derivatives[R]. Cambridge: University of Cambridge, 2009: 26-46.
[16] 唐晟, 赵耀华, 刁彦华, 等. 基于BOBYQA算法的微小通道热沉优化设计[J]. 北京工业大学学报, 2018, 44(6): 940-947.
TANG S, HOU Y H, DIAO Y H, et al.Optimal design on micro/mini-channel heat sink by BOBYQA algorithm[J].Journal of Beijing University of Technology, 2018, 44(6): 940-947.
[17] MIAO W P, LI C, WANG Y B, et al.Study of adaptive blades in extreme environment using fluid-structure interaction method[J]. Journal of fluids and structures, 2019, 91: 102734.
PDF(1959 KB)

Accesses

Citation

Detail

Sections
Recommended

/