PHOTOVOLTAIC MULTI-PEAK MPPT CONTROL BASED ON IMPROVED GWO UNDER COMPLEX SHADE

Fu Wenlong, Meng Jiaxin, Zhang Yunning, Xu Pan

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 435-442.

PDF(4796 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4796 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 435-442. DOI: 10.19912/j.0254-0096.tynxb.2021-1226

PHOTOVOLTAIC MULTI-PEAK MPPT CONTROL BASED ON IMPROVED GWO UNDER COMPLEX SHADE

  • Fu Wenlong1,2, Meng Jiaxin1,2, Zhang Yunning1,2, Xu Pan1
Author information +
History +

Abstract

The P-U curve of photovoltaic array presents multiple peak values in complex shading environment, resulting in the failure of maximum power point tracking (MPPT) algorithm. Therefore, a two-layer control model is proposed. In the upper model, Levy flight and polynomial mutation strategies are introduced into GWO algorithm to form a Levy-polynomial grey wolf optimization algorithm (LPGWO) to search for the global maximum power points. In the underlying model, the perturbation observation method is used to partly track the maximum power points to stabilize the power oscillation in the dynamic process. Simulation results show that in the multi-peak MPPT control, the proposed dual-layer control model has the characteristics of fast-tracking speed, high convergence accuracy and small overall power oscillation, thus improving the tracking efficiency and accuracy of maximum power output of photovoltaic array in complex shading environment.

Key words

photovoltaic arrays / maximum power point tracking (MPPT) / grey wolf optimizer / perturbation and observation / complex shade

Cite this article

Download Citations
Fu Wenlong, Meng Jiaxin, Zhang Yunning, Xu Pan. PHOTOVOLTAIC MULTI-PEAK MPPT CONTROL BASED ON IMPROVED GWO UNDER COMPLEX SHADE[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 435-442 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1226

References

[1] 李志军, 张奕楠, 王丽娟, 等. 基于改进量子粒子群算法的光伏多峰MPPT研究[J]. 太阳能学报, 2021, 42(5): 221-229.
LI Z J, ZHANG Y N, WANG L J, et al.Study of photovoltaic multimodal maximum power point tracking based on improved quantum particle swarm optimization[J]. Acta energiae solaris sinica, 2021, 42(5): 221-229.
[2] 杨佳涛, 吴西奇, 李睿, 等. 中压直挂光伏发电系统模块间电压-功率自主跟踪控制方法研究[J]. 中国电机工程学报, 2021, 41(8): 2815-2825.
YANG J T, WU X Q, LI R, et al.Research on submodules voltage-power self-tracking control method for medium-voltage direct-linked photovoltaic power generation system[J]. Proceedings of the CSEE, 2021, 41(8): 2815-2825.
[3] 李畸勇, 张伟斌, 赵新哲, 等. 改进鲸鱼算法优化支持向量回归的光伏最大功率点跟踪[J]. 电工技术学报, 2021, 36(9): 1771-1781.
LI J Y, ZHANG W B, ZHAO X Z,et al.Optimization of support vector regression based on improved Whale algorithm for pv array global maximum power point tracking[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1771-1781.
[4] TEY K S, MEKHILEF S, SEYEDMAHMOUDIAN M,et al.Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation[J]. IEEE transactions on industrial informatics, 2018, 14(10): 4322-4333.
[5] 刘宜罡, 邹应全, 张晓强, 等. 基于差分进化的光伏MPPT算法改进[J]. 太阳能学报, 2020, 41(6): 264-271.
LIU Y G, ZOU Y Q, ZHANG X Q, et al.An improved photovoltaic MPPT algorithm based on differential evolution algorithm[J]. Acta energiae solaris sinica, 2020, 41(6): 264-271.
[6] 朱梓嘉, 肖辉, 赵帅旗, 等. 基于并行组合进化算法的光伏阵列最大功率点追踪[J]. 电力系统保护与控制, 2020, 48(4): 1-10.
ZHU Z J, XIAO H, ZHAO S Q, et al.Maximum power point tracking of photovoltaic array based on parallel combination evolutionary algorithm[J]. Power system protection and control, 2020, 48(4): 1-10.
[7] JI Y S, DENG Y Z, FEI X, et al.Moth flame optimized for maximum force PV system point tracking under local shadow conditions[J]. Journal of power electronics, 2019, 19(5): 1248-1258.
[8] 龙文, 伍铁斌. 协调探索和开发能力的改进灰狼优化算法[J]. 控制与决策, 2017, 32(10): 1749-1757.
LONG W, WU T B.Improved grey wolf optimization algorithm coordinating the ability of exploration and exploitation[J]. Control and decision, 2017, 32(10): 1749-1757.
[9] 龙文, 伍铁斌, 唐明珠, 等. 基于透镜成像学习策略的灰狼优化算法[J]. 自动化学报, 2020, 46(10): 2148-2164.
LONG W, WU T B, TANG M Z, et al.Grey wolf optimizaer algorithm based on lens imaging learning strategy[J]. Acta automatica sinica, 2020, 46(10): 2148-2164.
[10] 石季英, 张登雨, 薛飞, 等. 基于改进灰狼优化-黄金分割混合算法的光伏阵列MPPT方法[J]. 电力系统及其自动化学报, 2019, 31(5): 21-26.
SHI J Y, ZHANG D Y, XUE F, et al.Maximum power point tracking method for photovoltaic array based on modified hybrid method of grey wolf optimization and golden-section optimization[J]. Proceedings of the CSU-EPSA, 2019, 31(5): 21-26.
[11] DARCY G J, SUBATHRA M S P. High gain DC-DC converter driven by photovoltaic brushless DC motor based on gray wolf optimization algorithm[J]. Applied sciences, 2020, 10: 27-97.
[12] 田艳军, 高皓楠, 王毅, 等. 光照不均时独立输入串联输出型光伏直流汇集系统分层优化MPPT控制策略[J]. 高电压技术, 2020, 46(10): 3552-3562.
TIAN Y J, GAO H N, WANG Y, et al.Hierarchical optimization MPPT control strategy for independent input-series-output PV DC collection system with uneven illumination[J]. High voltage engineering, 2020, 46(10): 3552-3562.
[13] ELTAMALY A M, FARH H M H. Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC[J]. Solar energy, 2019, 177: 306-316.
[14] 吴小进, 魏学业, 于蓉蓉. 复杂光照环境下光伏阵列输出特性研究[J]. 中国电机工程学报, 2011, 31(增刊): 162-167.
WU X J,WEI X Y,YU R R,et al.Study of output characteristics of PV array under complicated illumination environment[J]. Proceedings of the CSEE, 2011, 31(S): 162-167.
PDF(4796 KB)

Accesses

Citation

Detail

Sections
Recommended

/