UNCERTAINTY UNIT COMMITMENT OPTIMIZATION METHOD BASED ON CLEAN DEVELOPMENT MECHANISM

Li Yingliang, Gao Zhaodi, Wang Kang, Zhou Liwen, Wu Xiaomeng

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 368-375.

PDF(1726 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1726 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 368-375. DOI: 10.19912/j.0254-0096.tynxb.2021-1275

UNCERTAINTY UNIT COMMITMENT OPTIMIZATION METHOD BASED ON CLEAN DEVELOPMENT MECHANISM

  • Li Yingliang, Gao Zhaodi, Wang Kang, Zhou Liwen, Wu Xiaomeng
Author information +
History +

Abstract

In order to optimize the problems of high carbon emissions and low economy in the process of unit operation, this paper proposes an uncertain unit commitment model that considers the Clean Development Mechanism (CDM), which is better than traditional unit commitment strategies. Taking into account low-carbon aspects is more comprehensive. The paper also considers the two low-carbon elements of large-scale wind farms and electric vehicles, strengthens the connection between low-carbon elements and thermal power units, and promotes the rationalization of energy structure. The formulation of carbon emission trading mechanisms, CO2 emission costs, carbon emission quotas, etc. constraints reduces the operating cost of the unit, and provides a reasonable unit combination plan for the clean, low-carbon and economically optimal operation of the system. In this paper, a 10-unit system is taken as an example for simulation analysis. The results show that the proposed model can significantly reduce carbon emissions in the uncertain unit portfolio optimization problem, which is conducive to the low-carbon and economic operation of the unit.

Key words

clean development mechanism / low-carbon economy / unit commitment / electric vehicles / wind power

Cite this article

Download Citations
Li Yingliang, Gao Zhaodi, Wang Kang, Zhou Liwen, Wu Xiaomeng. UNCERTAINTY UNIT COMMITMENT OPTIMIZATION METHOD BASED ON CLEAN DEVELOPMENT MECHANISM[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 368-375 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1275

References

[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
LI H, LIU D, YAO D Y.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[2] 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58-64.
WANG C, ZHANG Y X.Implementation pathway and policy system of carbon neutrality vision[J]. Chinese journal of environmental management, 2020, 12(6): 58-64.
[3] PANDZIC H, DVORKIN Y, WANG Y S, et al.Toward cost-efficient and reliable unit commitment under uncertainty[J]. IEEE transactions on power systems, 2016, 31(2): 970-982.
[4] 刘建平, 王旭斌, 吴岩, 等. 含风电和储能的电力系统安全约束机组组合问题研究[J]. 现代电力, 2015, 32(5): 48-55.
LIU J P, WANG X B, WU Y, et al.Research on security-constrained unit commitment of power systems with wind farm and energy storage[J]. Modern electric power, 2015, 32(5): 48-55.
[5] 王砚平, 鲍威, 李赢, 等. 考虑N-1故障的安全约束机组组合模型及约束削减方法[J]. 电力自动化设备, 2021, 41(7): 167-175.
WANG Y P, BAO W, LI Y, et al.Model and constraint-reduction method for security-constrained unit commitment considering N-1 contingency[J]. Electric power automation equipment, 2021, 41(7): 167-175.
[6] ZHOU B R, GENG G C, JIANG Q Y.Hierarchical unit commitment with uncertain wind power generation[J]. IEEE transactions on power systems, 2016, 31(1): 94-104.
[7] 朱永利, 刘刚, 黄政, 等. 基于二进制微分进化算法和目标函数分解的大规模机组组合求解[J]. 电力自动化设备, 2019, 39(10): 150-156, 173.
ZHU Y L, LIU G, HUANG Z, et al.Large-scale unit commitment solution based on binary differential evolution algorithm and objective function decomposition[J]. Electric power automation equipment, 2019, 39(10): 150-156, 173.
[8] 卢志刚, 郭凯, 闫桂红, 等. 考虑需求响应虚拟机组和碳交易的含风电电力系统优化调度[J]. 电力系统自动化, 2017, 41(15): 58-65.
LU Z G, GUO K, YAN G H, et al.Optimal dispatch of power system integrated with wind power considering virtual generator units of demand response and carbon trading[J]. Automation of electric power systems, 2017, 41(15): 58-65.
[9] 李滨, 粟归玉, 王亚龙. 低碳电力下多目标机组组合优化调度[J]. 电力系统及其自动化学报, 2015, 27(11): 1-8.
LI B, SU G Y, WANG Y L.Multi-objective unit commitment optimization dispatch in the low-carbon electricity[J]. Proceedings of the CSU-EPSA, 2015, 27(11): 1-8.
[10] WEN X, ABBES D, FRANCOIS B.Stochastic optimization for security-constrained day-ahead operational planning under PV production uncertainties: reduction analysis of operating economic costs and carbon emissions[J]. IEEE access, 2021, 9: 97039-97052.
[11] 陈林, 万攀兵. 《京都议定书》及其清洁发展机制的减排效应——基于中国参与全球环境治理微观项目数据的分析[J]. 经济研究, 2019, 54(3): 55-71.
CHEN L, WAN P B.The Kyoto Protocol and its clean development mechanism’s emission reduction effects: micro-project data on China’s participation in global environmental governance[J]. Economic research journal, 2019, 54(3): 55-71.
[12] HONG I H, RODRIGUEZ G A N. Issues affecting the Clean Development Mechanism(CDM): a review[C]//IEEE International Conference on Computer Supported Cooperative Work in Design, IEEE, Hsinchu, China, 2014.
[13] CHANGE U N F C O C. Kyoto Protocol to the United Nations framework convention on climate change[J]. Review of European comparative & international environmental law, 2010, 7(2): 214-217.
[14] 沈可挺, 徐嵩龄, 贺菊煌. 中国实施CDM项目的CO2减排资源: 一种经济—技术—能源—环境条件下CGE模型的评估[J]. 中国软科学, 2002(7): 109-114.
SHEN K T, XU S L, HE J H.China’s CO2 emission reduction resulting from CDM implementation: a CGE-based evaluation under certain economy-technique-energy-environment condition[J]. China soft science, 2002(7): 109-114.
[15] LU S Y, LOU S H, WU Y W, et al.Power system economic dispatch under low-carbon economy with carbon capture plants considered[J]. IET generation, transmission & distribution, 2013, 7(9): 991-1001.
[16] LOU S H, LU S Y, WU Y W, et al.Optimizing spinning reserve requirement of power system with carbon capture plants[J]. IEEE transactions on power systems, 2015, 30(2): 1056-1063.
[17] 胡文平, 何立夫, 陈杰军, 等. 考虑大规模电动汽车接入电网的双层优化调度策略[J]. 电力系统保护与控制, 2016, 44(21): 22-28.
HU W P, HE L F, CHEN J J, et al.A bi-layer optimaization based schedule considering large-scale electric vehicles[J]. Power system protection and control, 2016, 44(21): 22-28.
[18] SABER A Y, VENAYAGAMOORTHY G K.Unit commitment with vehicle-to-grid using particle swarm optimization[C]//IEEE Bucharest Power Tech Conference, IEEE, Bucharest, Romania, 2009.
[19] 张晓花, 谢俊, 朱正伟, 等. 考虑不确定性的智能电网多目标机组组合研究[J]. 太阳能学报, 2016, 37(12): 3055-3062.
ZHANG X H, XIE J, ZHU Z W, et al.Research of multi-object unit combination in smart grid with uncertainty[J]. Acta energiae solaris sinica, 2016, 37(12): 3055-3062.
[20] HOSSEINI S H, KHODAEI A, AMINIFAR F.A novel straightforward unit commitment method for large-scale power systems[J]. IEEE transactions on power systems, 2007, 22(4): 2134-2143.
[21] 雷宇. 基于场景分析的含风电场电力系统机组组合问题的研究[D]. 济南: 山东大学, 2013.
LEI Y.Research on unit commitment of power system containing wind farm based on scenario analysis[D]. Ji’nan: Shandong University, 2013.
[22] 庞文涛, 盛德仁, 陈坚红, 等. 含风电系统的多机组协调运行滚动策略[J]. 太阳能学报, 2020, 41(11): 234-240.
PANG W T, SHENG D R, CHEN J H, et al.Rolling strategy of multiunit coordinated operation with wind power system[J]. Acta energiae solaris sinica, 2020, 41(11): 234-240.
PDF(1726 KB)

Accesses

Citation

Detail

Sections
Recommended

/