FLOW DISTRIBUTION PERFORMANCE RESEARCH ON SOLAR FIELD OF MOLTEN SALT PARABOLIC TROUGH SOLAR POWER PLANTS

Chen Zehong, Mi Youwan, Du Guanghan, Xu Canjun, Liu Guixiu, Li Gen

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 516-524.

PDF(2096 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2096 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 516-524. DOI: 10.19912/j.0254-0096.tynxb.2021-1305

FLOW DISTRIBUTION PERFORMANCE RESEARCH ON SOLAR FIELD OF MOLTEN SALT PARABOLIC TROUGH SOLAR POWER PLANTS

  • Chen Zehong1, Mi Youwan1, Du Guanghan2, Xu Canjun1, Liu Guixiu2, Li Gen2
Author information +
History +

Abstract

In the parabolic trough concentrating solar power plants, the multi-circuit flow distribution characteristics in the solar field have an important influence on the outlet temperature of the HTF (heat transfer fluid) and the operating performance of the plants. The traditional U-type solar field achieves its balanced flow distribution by regulating valves, which has higher requirements for the control level and higher construction cost. In this paper, parabolic trough solar field with molten salt as HTF is chosen as the research object, and a new Z-type layout of solar field is proposed, which realizes multi-loop self-balanced flow distribution by changing the diameter of the main-pipes. Through theoretical design and dynamic simulation based on Apros software, the steady state and dynamic performances of flow distribution, outlet temperature and pressure drop of the Z-type heat collecting loop under the change of DNI, inlet mass flow and cloud disturbance are studied. The results show that the Z-type solar field layout combined with the change of the main pipe diameter has good flow self-balance performance under both steady-state and dynamic conditions.

Key words

solar thermal power / collectors / flow of fluids / molten salt / Apros

Cite this article

Download Citations
Chen Zehong, Mi Youwan, Du Guanghan, Xu Canjun, Liu Guixiu, Li Gen. FLOW DISTRIBUTION PERFORMANCE RESEARCH ON SOLAR FIELD OF MOLTEN SALT PARABOLIC TROUGH SOLAR POWER PLANTS[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 516-524 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1305

References

[1] 陈昊, 王纲. 太阳能发电潜力及前景分析[J]. WTO经济导刊, 2012(2-3): 48-51.
CHEN H, WANG G.Analysis of potential and prospects of solar power[J]. China WTO tribune, 2012(2-3): 48-51.
[2] 袁炜东. 国内外太阳能光热发电发展现状及前景[J]. 电力与能源, 2015, 36(4): 487-490.
YUAN W D.Current development and prospect of solar-thermal power generation in China and abroad[J]. Power & energy, 2015, 36(4): 487-490.
[3] PROJECTS. King of Spain opens Gemasolar plant[J]. Renewable energy focus, 2011, 12(5): 6.
[4] 孔令刚, 陈鑫龙, 张志勇, 等. 线性菲涅尔式光热发电技术现状及发展趋势[J]. 兰州交通大学学报, 2020, 39(6): 51-57.
KONG L G, CHEN X L, ZHANG Z Y, et al.Research status and development trend of linear Fresnel concentrating solar power technology[J]. Journal of Lanzhou Jiaotong University, 2020, 39(6): 51-57.
[5] 张延安, 郭建芳. 青海省太阳能发电经济性研究及政策建议[J]. 环境与可持续发展, 2017, 42(5): 74-76.
ZHANG Y A, GUO J F.Economy and policy suggestions of solar power generation in Qinghai[J]. Environment and sustainable development, 2017, 42(5): 74-76.
[6] 王璐. 中国首个大型太阳能光热示范电站正式投运[J]. 电力设备管理, 2018(10): 94.
WANG L, China’s first large solar photothermal demonstration power station officially launched[J]. Power equipment management, 2018(10): 94.
[7] ALMASABI A, ALOBAIDLI A, ZHANG T J.Transient characterization of multiple parabolic trough collector loops in a 100 MW CSP plant for solar energy harvesting[J]. Energy procedia, 2015, 69: 24-33.
[8] KARVOUNIS P, KOUBOGIANNIS D, HONTZOPOULOS E, et al.Numerical and experimental study of flow characteristics in solar collector manifolds[J]. Energies, 2019, 12(8): 1431.
[9] WU J J, HAN Y, HOU H J, et al.Optimization of solar field layout and flow velocity in a solar-aided power generation system[J]. Energy, 2020, 208: 118344.
[10] 王慧富, 吴玉庭, 张晓明, 等. 熔盐槽式太阳能热发电站集热系统性能研究[J]. 太阳能学报, 2020, 41(6): 317-325.
WANG H F, WU Y T, ZHANG X M, et al.Performance research on solar field of molten salt parabolic trough solar power plants[J]. Acta energiae solaris sinica, 2020,41(6): 317-325.
[11] 于刚, 罗娜, 侯宏娟, 等. 槽式集热系统流速及布置优化[J]. 动力工程学报, 2015, 35(6): 501-508.
YU G, LUO N, HOU H J, et al.Velocity and layout optimization of parabolic trough solar systems[J]. Journal of Chinese Society of Power Engineering, 2015,35(6): 501-508.
[12] BAVA F, DRAGSTED J, FURBO S.A numerical model to evaluate the flow distribution in a large solar collector field[J]. Solar energy, 2017, 143: 31-42.
[13] MA L R, WANG Z F, LEI D Q, et al.Establishment, validation, and application of a comprehensive thermal hydraulic model for a parabolic trough solar field[J]. Energies, 2019, 12(16): 3161.
[14] MA L R, ZHANG T, ZHANG X L, et al.Optimization of parabolic trough solar power plant operations with nonuniform and degraded collectors[J]. Solar energy, 2021,214: 551-564.
[15] ABUTAYEH M, ALAZZAM A, EL-KHASAWNEH B.Balancing heat transfer fluid flow in solar fields[J]. Solar energy, 2014, 105: 381-389.
[16] 王云. 平衡阀在供暖空调系统中应用的实验研究[D]. 邯郸: 河北工程大学, 2016.
WANG Y.Test study on balancing valve used in heating and air conditioning system[D]. Handan: Hebei University of Engineering, 2016.
[17] AL-MALIKI W A K, ALOBAID F, KEZ V, et al. Modelling and dynamic simulation of a parabolic trough power plant[J]. Journal of process control, 2016,39: 123-138.
[18] BURKHOLDER F, KUTSCHER C. Heat loss testing of Schott’s2008 PTR70 parabolic trough receiver[R]. NREL/TP-550-45633, 2009.
[19] LI M Y, CHU Y H, PEDRO H T C, et al. Quantitative evaluation of the impact of cloud transmittance and cloud velocity on the accuracy of short-term DNI forecasts[J]. Renewable energy, 2016, 86: 1362-1371.
PDF(2096 KB)

Accesses

Citation

Detail

Sections
Recommended

/