CALCULATION ANALYSIS AND CHARACTERISTIC SIMULATION METHOD OF SOLAR RADIATION RESOURCES

Zhao Mingzhi, Duan Peiyao, Chang Chun, Su Hailong, Meng Zhongju, Mei Aohan

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 22-28.

PDF(2789 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2789 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (3) : 22-28. DOI: 10.19912/j.0254-0096.tynxb.2021-1326

CALCULATION ANALYSIS AND CHARACTERISTIC SIMULATION METHOD OF SOLAR RADIATION RESOURCES

  • Zhao Mingzhi1, Duan Peiyao1, Chang Chun2, Su Hailong3, Meng Zhongju4, Mei Aohan1
Author information +
History +

Abstract

Theoretical calculations of solar radiation and TRANSYS meteorological system are used for the calculation and characterization of radiation resources. Derive the radiation from the radiation of a typical day of the month for the extraterrestrial, horizontal and inclined surfaces, as well as the total monthly and annual radiation of total and direct radiation. And analyze the total, direct radiation under different percentages of insolation. Use TRANSYS to simulate the change of total and direct radiation of the horizontal and inclined surfaces outside the earth. The results of calculation and analysis show that the total annual solar radiation for the area of Ordos Darat Banner is 9916 MJ/m2, and the total annual solar radiation for the inclined plane is 7675 MJ/m2. There is a big difference between the horizontal and inclined plane radiation. The simulation method of this paper is also applicable to the calculation of solar radiation in any area.

Key words

solar radiation resources / incident solar radiation / daylight / meteorological data / typical meteorological year (TMY) data / TRANSYS

Cite this article

Download Citations
Zhao Mingzhi, Duan Peiyao, Chang Chun, Su Hailong, Meng Zhongju, Mei Aohan. CALCULATION ANALYSIS AND CHARACTERISTIC SIMULATION METHOD OF SOLAR RADIATION RESOURCES[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 22-28 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1326

References

[1] 庄贵阳. 我国实现“双碳”目标面临的挑战及对策[J]. 人民论坛, 2021(18): 50-53.
ZHUANG G Y.Challenges and countermeasures for china to achieve the goal of“Double Carbon”[J]. People’s forum, 2021(18): 50-53.
[2] 李灿. 大力发展太阳能减碳新技术[N]. 中国科学报, 2021.
LI C.Vigorously develop new solar carbon reduction technology[N]. China Science News, 2021.
[3] 郝玉珠, 李兴华, 胡亚男, 等. 内蒙古57年太阳能资源变化规律及影响因子[J]. 太阳能学报, 2021, 42(9): 145-151.
HAO Y Z, LI X H, HU Y N, et al.Changes rules and influencing factors of 57 years of solar energy resources in Inner Mongolia[J]. Acta energiae solaris sinica, 2021, 42(9): 145-151.
[4] 王志春, 张新龙, 苑俐, 等. 内蒙古赤峰市太阳能资源评估与开发潜力分析[J]. 沙漠与绿洲气象, 2021, 15(2): 106-111.
WANG Z C, ZHANG X L, YUAN L, et al.Analysis of assessment and exploitation potential of solar energy resource in Chifeng city of Inner Mongolia[J]. Desert and oasis meteorology, 2021, 15(2): 106-111.
[5] 金光, 陈正浩, 郭少朋, 等. 内蒙古地区太阳能-地源热泵系统供暖可行性研究[J]. 太阳能学报, 2021, 42(4): 334-341.
JIN G, CHEN Z H, GUO S P, et al.Feasibility analysis of heating with solar energy-ground source heat pump system in Inner Mongolia[J]. Acta energiae solaris sinica, 2021, 42(4): 334-341.
[6] 牛锋. 库布其沙漠林光互补治沙模式探讨——以达拉特旗为例[J]. 内蒙古林业调查设计, 2021, 44(2): 7-9.
NIU F.Complementary sand control mode of forestry and photovoltaic industry in Kubuqi desert—a case study of Dalad Banner[J]. Inner Mongolia forestry investigation and design, 2021, 44(2): 7-9.
[7] DUVE J A, BECKMAN W A.Solar engineering of thermal processes[M]. New York: Wiley, 1991.
[8] 乔庆军. 地面物体接收太阳辐射量的计算方法[J]. 科技视界, 2016(22): 177-178.
QIAO Q J.The calculation method of ground objects receiving solar radiation quantity[J]. Science & technology vision, 2016(22): 177-178.
[9] 刘媛媛, 胡琦, 和骅芸, 等. 中国不同时间尺度地表太阳总辐射估算研究[J]. 气候变化研究进展, 2021, 17(2): 175-183.
LIU Y Y, HU Q, HE H Y, et al.Estimation of total surface solar radiation at different time scales in China[J]. Climate change research, 2021, 17(2): 175-183.
[10] KLEIN S A.Calculation of monthly average insolation on tilted surfaces[J]. Solar energy, 1976, 19(4): 325-329.
[11] 喜文华. 太阳能实用工程技术[M]. 兰州: 兰州大学出版社, 2001.
XI W H.Solar energy engineering technologies[M]. Lanzhou: Lanzhou University Press, 2001.
[12] 申彦波, 赵东, 祝昌汉, 等. 近50年来鄂尔多斯地面太阳辐射的变化及与相关气象要素的联系[J]. 高原气象, 2009, 28(4): 786-794.
SHEN Y B, ZHAO D, ZHU C H, et al.Variational characteristics of surface solar radiation and associated meteorological elements over Ordos Plateau in recent 50 years[J]. Plateau meteorology, 2009, 28(4): 786-794.
[13] 曹庆国, 阴秀霞, 曹庆峰. 日照百分率变化特征及对气候变化的影响[J]. 农民致富之友, 2011(2): 24.
CAO Q G, YIN X X, CAO Q F.Variation characteristics of sunshine percentage and its impact on climate change[J]. Friends of farmers to get rich, 2011(2): 24.
[14] 王小杨, 黄平祖, 陈荣荣. 基于PVsyst与Meteonorm的太阳能资源评估结果分析[J]. 建筑电气, 2017, 36(7): 36-40.
WANG X Y, HUANG P Z, CHEN R R.Results analysis on solar energy resources assessment based on PVsyst and Meteonorm[J]. Building electric, 2017, 36(7): 36-40.
[15] 李红莲, 王安, 胡尧, 等. 典型气象年和非典型气象年在建筑节能设计中的应用研究[J]. 建筑节能, 2021, 49(11): 80-86.
LI H L, WANG A, HU Y, et al.Application of typical meteorological years and untypical meteorological years in building energy consumption simulation[J]. Building energy efficiency, 2021, 49(11): 80-86.
PDF(2789 KB)

Accesses

Citation

Detail

Sections
Recommended

/