ANALYSIS ON APPROACHES FOR INCREASING HEAT SUPPLYING TEMPERATURE OF CO2 TRANSCRITICAL HEAT PUMP

Shi Weixiu, Ji Xueyuan, Pan Lisheng, Lyu Yifan, Wei Xiaolin

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 104-111.

PDF(1781 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1781 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 104-111. DOI: 10.19912/j.0254-0096.tynxb.2021-1349
Topics on Key Technologies for Safety of Electrochemical Energy Storage Systems and Echelon Utilization of Decommissioned Power Batteries

ANALYSIS ON APPROACHES FOR INCREASING HEAT SUPPLYING TEMPERATURE OF CO2 TRANSCRITICAL HEAT PUMP

  • Shi Weixiu1, Ji Xueyuan1, Pan Lisheng2, Lyu Yifan1, Wei Xiaolin2
Author information +
History +

Abstract

The transcritical heat pump with CO2, an environmentally friendly natural working fluid, shows great potential in high temperature heating. A CO2 transcritical pressurization analysis model and a CO2 transcritical heat pump analysis model have been established. Based on them, the effects of different pressurization processes on COP, outlet temperature and mass flow rate of water in gas cooler are studied. The results show that both approaches can improve the isentropic efficiency, power and outlet working fluid temperature of the compressor, and increase the outlet water temperature of the gas cooler, but decrease the COP and hot water mass flow. In general, when increasing the outlet water temperature of gas cooler, the approach of increasing the suction superheat makes power increases slightly, but the COP decreases greatly, which can increase hot water temperature in a small range. By increasing the compressor outlet pressure, the hot water temperature is higher, the controllable range is larger, and COP has a smaller decline.

Key words

carbon dioxide / heat pump system / high temperature application / centrifugal compressor

Cite this article

Download Citations
Shi Weixiu, Ji Xueyuan, Pan Lisheng, Lyu Yifan, Wei Xiaolin. ANALYSIS ON APPROACHES FOR INCREASING HEAT SUPPLYING TEMPERATURE OF CO2 TRANSCRITICAL HEAT PUMP[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 104-111 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1349

References

[1] 潘利生, 魏小林, 史维秀.一种新型CO2跨临界动力循环理论研究[J]. 工程热物理学报, 2015, 36(6): 1182-1185.
PAN L S, WEI X L, SHI W X.Theoretical investigation on a novel CO2 transcritical power cycle[J]. Journal of engineering thermophysics, 2015, 36(6): 1182-1185.
[2] 宋昱龙, 王海丹, 殷翔,等. 跨临界CO2蒸气压缩式制冷与热泵技术综述[J]. 制冷学报, 2021, 42(2): 1-24.
SONG Y L, WANG H D, YIN X, et al. Review of transcritical CO2 vapor compression technology in refrigeration and heat pump[J]. Journal of refrigeration, 2021, 42(2): 1-24.
[3] 杨军, 陆平, 陈江平, 等. 跨临界CO2系统用膨胀机的开发与模型分析[J]. 上海交通大学学报, 2008, 42(3): 453-456.
YANG J, LU P, CHEN J P, et al. Development and model analysis of an expander for transcritical CO2 system[J]. Journal of Shanghai Jiaotong University, 2008(3): 453-456.
[4] ZHANG B, PENG X, HE Z, et al. Development of a double acting free piston expander for power recovery in transcritical CO2 cycle[J]. Applied thermal engineering, 2007, 27(8-9): 1629-1636.
[5] RONY U, GLADEN A.Parametric study and sensitivity analysis of a PV/microchannel direct-expansion CO2 heat pump[J]. Solar energy, 2021, 218: 282-295.
[6] ZHU Y H, HUANG Y L, LI C H, et al. Experimental investigation on the performance of transcritical CO2 ejector-expansion heat pump water heater system[J]. Energy conversion and management, 2018, 167: 147-155.
[7] 邹春妹, 岑继文, 刘培, 等. 跨临界二氧化碳热泵喷射循环实验[J]. 化工学报, 2016, 67(4): 1520-1526.
ZOU C M, CEN J W, LIU P, et al. Transcritical CO2 heat pumpsystem with and enjector[J]. CIESC journal, 2016, 67(4): 1520-1526.
[8] ZHU Y H, JIANG P X.Theoretical model of transcritical CO2 ejector with non-equilibrium phase change correlation[J]. International journal of refrigeration, 2018, 86: 218-227.
[9] 陈琪, 佟杨, 李矛, 等. 两种跨临界CO2热泵热水器系统循环性能实验研究[J]. 太阳能学报, 2013, 34(11): 1903-1909.
CHEN Q, TONG Y, LI M, et al. Experimental study on cycle performance of two transcritical CO2 heat pump water heater systems[J]. Acta solar energy sinica, 2013, 34(11): 1903-1909.
[10] RONY U, GLADEN A.Numerical modeling of a photovoltaic/microchannel direct-expansion evaporator for a CO2 heat pump[J]. Thermal science and engineering applications, 2021, 13(2): 021022.
[11] 余文芳, 李敏霞, 王飞波, 等. CO2系统微通道蒸发器的研究[J]. 工程热物理学报, 2015, 36(9): 1858-1862.
YU W F, LI M X, WANG F B, et al. Research on the micro-channels evaporator for carbon system[J]. Journal of engineering thermophysics, 2015, 36(9): 1858-1862.
[12] KASHIF N, BO S, AHMED E, et al. Performance optimization of CO2 heat pump water heater[J]. International journal of refrigeration, 2018, 85: 213-228.
[13] 袁秋霞, 马一太, 张子坤, 等. CO2水源热泵热水机气体冷却器的实验研究[J]. 太阳能学报, 2012, 33(10): 1797-1802.
YUAN Q X, MA Y T, ZHANG Z K, et al. Experimental study on gas cooler of CO2 water source heat pump water heater[J]. Acta energiae solaris sinica, 2012, 33(10): 1797-1802.
[14] CAO F, YE Z L, WANG Y K.Experimental investigation on the influence of internal heat exchanger in a transcritical CO2 heat pump water heater[J]. Applied thermal engineering, 2020, 168: 114855.
[15] LEMMONN E W, HUBER M L, MCLINDEN M O.Nist standard reference database 23, reference fluid thermodynamic and transport properties (REFPROP).version 9.0[CP/DK]. National institute of standards and technology, 2010.
PDF(1781 KB)

Accesses

Citation

Detail

Sections
Recommended

/