ACTIVE SERIES ARC FAULT DETECTION METHOD OF INTELLIGENT BUILDINGS DC SYSTEM BASED ON HIGH FREQUENCY INJECTION

Wang Zekun, Gong Chunyang, Bao Jun, Zhu Guozhong, Wang Zhixin

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 398-406.

PDF(2038 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2038 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 398-406. DOI: 10.19912/j.0254-0096.tynxb.2021-1383

ACTIVE SERIES ARC FAULT DETECTION METHOD OF INTELLIGENT BUILDINGS DC SYSTEM BASED ON HIGH FREQUENCY INJECTION

  • Wang Zekun1, Gong Chunyang2, Bao Jun3, Zhu Guozhong4, Wang Zhixin1
Author information +
History +

Abstract

This paper proposes an active series arc fault detection method for intelligent buildings DC system, of which a high frequency current is injected into the DC bus through coil coupling to detect the output response of the current signal on the DC bus. Wavelet transform is used to analyze the characteristic changes and stability of current signal output and input. Develop criteria for identifying arc faults. Based on Matlab/Simulink simulation platform, this paper uses the Cassie arc model to build the simulation circuit, and the corresponding experimental platform is built for verification. The simulation and experimental results show that the detection method proposed in this paper can accurately identify series arc faults in low-voltage DC systems, and effectively reduce the noise of switching devices such as power electronics and the influence of external conditions such as different operating conditions, and verify the effectiveness and robustness of the proposed method.

Key words

PV power / electric fault current / wavelet transform / intelligent building / distributed power generation

Cite this article

Download Citations
Wang Zekun, Gong Chunyang, Bao Jun, Zhu Guozhong, Wang Zhixin. ACTIVE SERIES ARC FAULT DETECTION METHOD OF INTELLIGENT BUILDINGS DC SYSTEM BASED ON HIGH FREQUENCY INJECTION[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 398-406 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1383

References

[1] 鲁宗相, 黄瀚, 单葆国, 等. 高比例可再生能源电力系统结构形态演化及电力预测展望[J]. 电力系统自动化, 2017, 41(9): 12-18.
LU Z X, HUANG H, SHAN B G, et al.Morphological evolution model and power forecasting prospect of future electric power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 12-18.
[2] 邹洪涛. 基于BIM技术的智慧建筑综合运用策略[J]. 智能建筑与城市信息, 2021(5): 75-76.
ZOU H T.Comprehensive application strategy of smart buildings based on BIM techno logy[J]. Intelligent building & smart city, 2021(5): 75-76.
[3] 李智华, 钟杰人, 吴春华, 等. 光伏电站中故障电弧信号的传输行为研究[J]. 太阳能学报, 2021, 42(7): 152-160.
LI Z H, ZHONG J R, WU C H, et al.Study on transmission behavior of fault arc signal in photovoltaic power plant[J]. Acta energiae solaris sinica, 2021, 42(7): 152-160.
[4] 熊庆, 陈维江, 汲胜昌, 等. 低压直流系统故障电弧特性、 检测和定位方法研究进展综述[J]. 中国电机工程学报, 2020, 40(18): 6015-6027.
XIONG Q, CHEN W J, JI S C, et al.Review of research progress on characteristics, detection and localization approaches of fault arc in low voltage DC system[J]. Proceedings of the CSEE, 2020, 40(18): 6015-6027.
[5] 陈萌. 低压直流串联电弧故障诊断研究[D]. 天津: 天津工业大学, 2019.
CHEN M.Research on low-voltage DC series arc fault diagnsis[D]. Tianjin: Tiangong University, 2019.
[6] BRUSSO B C.History of aircraft wiring arc-fault protection[J]. IEEE industry applications magazine, 2017, 23(3): 6-11.
[7] 白辉, 许志红. 基于小波包变换和高阶累积量的电弧故障识别方法[J]. 电力自动化设备, 2020, 40(11): 195-202, 224.
BAI H, XU Z H.Arc fault identification method based on wavelet packet transform and high-order cumulant[J]. Electric power automation equipment, 2020, 40(11): 195-202, 224.
[8] 白浩, 潘姝慧, 邵向潮, 等. 基于小波去噪与随机森林的配电网高阻接地故障半监督识别方法[J]. 电力系统保护与控制, 2022, 50(20): 79-87.
BAI H, PAN S H, SHAO X C, et al.A high impedance grounding fault semi-supervised identification method based on wavelet denoising and random forest[J]. Power system protection and control, 2022, 50(20): 79-87.
[9] 张程, 邱炳林. 基于可调Q因子小波变换与稀疏时域法的电力系统低频振荡模态辨识[J]. 电力系统保护与控制, 2022, 50(13): 63-72.
ZHANG C, QIU B L.Power system low frequency oscillation modal identification based on a tunable Q-factor wavelet transform and sparse time domain method[J]. Power system protection and control, 2022, 50(13): 63-72.
[10] SARLIOGLU B, MORRIS C T.More electric aircraft: review,challenges, and opportunities for commercial transport aircraft[J]. IEEE transactions on transportation electrification, 2015, 1(1): 54-64.
[11] 李叶茂, 李雨桐, 郝斌, 等. 低碳发展背景下的建筑“光储直柔”配用电系统关键技术分析[J]. 供用电, 2021, 38(1): 32-38.
LI Y M, LI Y T, HAO B, et al.Key technologies of building power supply and distribution system towards carbon neutral development[J]. Distribution & utilization, 2021, 38(1): 32-38.
[12] 吴春华, 冯夏云, 袁同浩, 等. 基于BP神经网络的光伏故障电弧检测方法研究[J]. 太阳能学报, 2016, 37(11): 2958-2964.
WU C H, FENG X Y, YUAN T H, et al.Photovoltaic arc fault detection method based on BP neural network[J]. Acta energiae solaris sinica, 2016, 37(11): 2958-2964.
[13] LU S B, PHUNG B T, ZHANG D M.A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems[J]. Renewable and sustainable energy reviews, 2018, 89: 88-98.
[14] JOHNSON J, PAHL B, LUEBKE C, et al.Photovoltaic DC arc fault detector testing at Sandia National Laboratories[C]//37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 2011: 003614-003619.
[15] JOHNSON J, MONTOYA M, MCCALMONT S, et al.Differentiating series and parallel photovoltaic arc-faults[C]//38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 2012: 720-726.
[16] 姚秀, 汲胜昌, Luis Herrera, 等. 串联直流电弧特性及其在故障诊断中的应用[J]. 高压电器, 2012, 48(5): 6-10.
YAO X, JI S C, LUIS H, et al.Series DC arc characteristic study and the application in fault recognition[J]. High voltage apparatus, 2012, 48(5): 6-10.
[17] SCHOEPF T J, NAIDU M, GOPALAKRISHNAN S.Mitigation and analysis of arc faults in automotive DC networks[J]. IEEE transactions on components and packaging technologies, 2005, 28(2): 319-326.
[18] 王先发, 顾卫祥. 光伏系统直流侧故障电弧的检测与判别[J]. 电气技术, 2019, 20(5): 10-13.
WANG X F, GU W X.Detection and discrimination of DC side fault arc in photovoltaic system[J]. Electrical engineering, 2019, 20(5): 10-13.
[19] 吴春华, 徐文新, 李智华, 等. 光伏系统直流电弧故障检测方法及其抗干扰研究[J]. 中国电机工程学报, 2018, 38(12): 3546-3555, 3514.
WU C H, XU W X, LI Z H, et al.Study on detection method and its anti-interference of DC arc fault for photovoltaic system[J]. Proceedings of the CSEE, 2018, 38(12): 3546-3555, 3514.
[20] 牟龙华, 王伊健, 蒋伟, 等. 光伏系统直流电弧故障特征及检测方法研究[J]. 中国电机工程学报, 2016, 36(19): 5236-5244, 5405.
MOU L H, WANG Y J, JIANG W, et al.Study on characteristics and detection method of DC arc fault for photovoltaic system[J]. Proceedings of the CSEE, 2016, 36(19): 5236-5244, 5405.
[21] 王雪菲, 李京, 陈平, 等. 基于行波波形综合相似度比较的电缆故障选线[J]. 电力系统保护与控制, 2022, 50(1): 51-59.
WANG X F,LI J, CHEN P, et al.Cable fault line selection based on comprehensive similarity comparison of traveling wave waveforms[J]. Power system protection and control, 2022, 50(1): 51-59.
[22] SCHAVEMAKER P H, SLUIS L V D. The arc fault blockset[C]//Proceedings of the Second IASTED International Conferenceon POWER and ENERGY SYSTEM (EuroPES), Crete, Greece, 2002.
[23] CASSIE A M.Theorie nouvelle des arcs de rupture et de la rigidite des circuits[J]. CIGRE, 1939, 102: 588-608.
[24] YUAN L, SUN L, WU H R.Simulation of fault arc using conventional arc models[J]. Energy and power engineering, 2013, 5(4): 833-837.
[25] GUARDADO J L, MAXIMOV S G, MELGOZA E, et al.An improved arc model before current zero based on the combined Mayr and Cassie arc models[J]. IEEE transactions on power delivery, 2005, 20(1): 138-142.
PDF(2038 KB)

Accesses

Citation

Detail

Sections
Recommended

/