DESIGN, MODELING AND ANALYSIS OF AUXILIARY HEAT DISSIPATION SYSTEM FOR PROTON EXCHANGE MEMBRANE FUEL CELL VEHICLE

Tao Lirong, Liu Yu, Kong Hongbing, Zhao Zhengshun

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 299-305.

PDF(1630 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1630 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 299-305. DOI: 10.19912/j.0254-0096.tynxb.2021-1396

DESIGN, MODELING AND ANALYSIS OF AUXILIARY HEAT DISSIPATION SYSTEM FOR PROTON EXCHANGE MEMBRANE FUEL CELL VEHICLE

  • Tao Lirong1, Liu Yu1,2, Kong Hongbing1,2, Zhao Zhengshun2
Author information +
History +

Abstract

The mathematical model of the auxiliary heat dissipation system for vehicle PEMFC is established, and the pipeline connection modes of the auxiliary heat dissipation system for the PEMFC engine system of a vehicle are designed. The flow resistance of the pipeline, coolant flow rate and coolant temperature rise are analyzed, and experiment is carried out to verify the mathematical model. The results show that the mathematical model is accurate and reliable which can be used to design and optimize the pipeline connection mode of PEMFC auxiliary heat dissipation system. Under the same total coolant flow rate, the total flow resistance of the pipeline of the three-way parallel solution (air compressor controller - air compressor ontology) || (step-down DCDC- booster DCDC) || (hydrogen pump controller) is 40.7% lower than that of the two-way parallel solution (hydrogen pump controller - air compressor controller - air compressor ontology) || (step-down DCDC- booster DCDC). The coolant flow rate of each branch pipeline meets the heat dissipation requirements of components, and the temperature rise of the coolant also meets the heat dissipation requirements of the vehicle.

Key words

proton exchange membrane fuel cell / thermal management / modeling / auxiliary heat dissipation / system design / flow resistance

Cite this article

Download Citations
Tao Lirong, Liu Yu, Kong Hongbing, Zhao Zhengshun. DESIGN, MODELING AND ANALYSIS OF AUXILIARY HEAT DISSIPATION SYSTEM FOR PROTON EXCHANGE MEMBRANE FUEL CELL VEHICLE[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 299-305 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1396

References

[1] 孟祥廷. 燃料电池发动机热管理系统设计与优化[D]. 济南: 山东大学, 2020.
MENG X T.Design and optimization of fuel cell thermal management system[D]. Ji'nan: Shandong University, 2020.
[2] 卢炽华, 王良旭, 刘志恩, 等. 燃料电池汽车整车热管理系统设计与仿真分析[J]. 重庆大学学报, 2022(10): 48-61.
LU Z H, WANG L X, LIU Z E, et al.Design and simulation analysis of the whole vehicle thermal management system for fuel cell vehicle[J]. Journal of Chongqing University, 2022(10): 48-61.
[3] 王建建, 胡辰树. 我国氢燃料电池专用车发展现状与趋势分析[J]. 专用汽车, 2021(4): 51-55.
WANG J J, HU C S.Development status and trend analysis of hydrogen fuel cell special vehicles in China[J]. Special purpose vehicle, 2021(4): 51-55.
[4] 张敏. 75 kW质子交换膜燃料电池测试台散热系统设计[J]. 农业装备与车辆工程, 2017, 55(8): 15-18.
ZHANG M.Design of cooling system for a 75 kW PEMFC testing platform[J]. Agricultural equipment and vehicle engineering, 2017, 55(8): 15-18.
[5] 郑文杰, 杨径, 朱林培, 等. 车用燃料电池热管理性能仿真与试验研究[J]. 汽车工程, 2021, 43(3): 381-386.
ZHENG W J, YANG J, ZHU L P, et al.Simulation and experimental study on thermal management system of vehicle fuel cell[J]. Automotive engineering, 2021, 43(3): 381-386.
[6] 李菁, 汪怡平, 陶琦, 等. 全功率燃料电池汽车散热系统设计、建模与分析[J]. 汽车工程学报, 2019, 9(6): 462-467.
LI J, WANG Y P, TAO Q, et al.Design,modeling and analysis of heat dissipation system for full-power fuel cell vehicles[J]. Chinese journal of automotive engineering, 2019, 9(6): 462-467.
[7] HASEGAWA T, IMANISHI H, NADA M, et al.Development of the fuel cell system in the Mirai FCV[C]// Sae World Congress & Exhibition, Detroit, America, 2016.
[8] 常国峰, 曾辉杰, 许思传. 燃料电池汽车热管理系统的研究[J]. 汽车工程, 2015, 37(8): 959-963.
CHANG G F, ZENG H J, XU S C.A study on the thermal management system of fuel cell vehicle[J]. Automotive engineering, 2015, 37(8): 959-963.
[9] 周奕, 陈建利, 赵阳, 等. 燃料电池客车散热系统设计分析[J]. 上海汽车, 2010(1): 19-20, 48.
ZHOU Y, CHEN J L, ZHAO Y, et al.Design and analysis of heat dissipation system for fuel cell bus[J]. Shanghai automotive, 2010(1): 19-20, 48.
[10] 丁琰, 常国峰, 许思传. 燃料电池发动机散热器传热与流阻特性分析[J]. 电源技术, 2014, 38(2): 262-264, 275.
DING Y, CHANG G F, XU S C.Characteristic analysis of heat transfer and pressure drop on fuel cell engine radiator[J]. Power technology, 2014, 38(2): 262-264, 275.
[11] 郭硕. 质子交换膜燃料电池热管理系统研究[D]. 合肥: 合肥工业大学, 2020.
GUO S.Study on proton exchange membrane fuel cell thermal management system[D]. Hefei: Hefei University of Technology, 2020.
[12] 纪合超, 陈涛, 刘士华, 等. 质子交换膜燃料电池温度监控系统的设计与开发[J]. 太阳能学报, 2020, 41(11): 375-380.
JI H C, CHEN T, LIU S H, et al.Design and development of temperature monitoring system for proton exchange membrane fuel cells[J]. Acta energiae solaris sinica, 2020, 41(11): 375-380.
PDF(1630 KB)

Accesses

Citation

Detail

Sections
Recommended

/