COMPENSATION EFFECT RESEARCH OF OPPOSITE POLARITY IMPURITY IN SILICON INGOT

Liu Zhendong, Li Zhitao, Gao Qianqian, Liu Ruizhu

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 414-419.

PDF(1972 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1972 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 414-419. DOI: 10.19912/j.0254-0096.tynxb.2021-1435

COMPENSATION EFFECT RESEARCH OF OPPOSITE POLARITY IMPURITY IN SILICON INGOT

  • Liu Zhendong1,2, Li Zhitao1, Gao Qianqian1, Liu Ruizhu2
Author information +
History +

Abstract

The Scheil equation, four-probe method, Hall effect technology, ultraviolet-visible light absorption spectroscopy, and XRD technique are employed to simulate and test the impurity distribution, resistivity, carrier concentration, band gap and crystal structure of solar-grade silicon ingot, respectively. The results show that if the atomic concentration of the donor impurity in silicon material is less than 0.39 times that of the acceptor impurity, the casted p-type silicon ingots do not occur the polarity inversion. Due to the compensation effect between the impurities of opposite polarity, the p-n junction region in which both the minority carrier lifetime and bulk resistivity reach the maximum value, is formed in the polarity inversion region of the silicon ingot. Meanwhile, the crystal structure of the ingot does not be changed, and the band gap is decreased by 25.89% compared with the characteristic silicon ingot. For the polarity inversion region of silicon ingot, subsequent “phosphorus diffusion”process of the as-cut silicon wafers can be omitted. Employing the techniques of dopant compensation can fabricate high efficiency and low-cost silicon solar cells.

Key words

solar cells / carrier mobility / minority carrier lifetime / compensation effect / Scheil equation / solar-grade silicon

Cite this article

Download Citations
Liu Zhendong, Li Zhitao, Gao Qianqian, Liu Ruizhu. COMPENSATION EFFECT RESEARCH OF OPPOSITE POLARITY IMPURITY IN SILICON INGOT[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 414-419 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1435

References

[1] NÆRLAND T U, BERNARDINI S, STODDARD N, et al. Comparison of iron-related recombination centers in boron, gallium, and indium doped silicon analyzed by defect parameter contour maping[J]. Energy procedia, 2017, 124: 138-145.
[2] HOSHIKAWA T, TAISHI T, OISHI S, et al.Investigation of methods for doping CZ silicon with gallium[J]. Journal of crystal growth, 2005, 275(1-2): e2141-e2145.
[3] FOURMOND E, FORSTER M, EINHAUS R, et al.Electrical properties of boron, phosphorus and gallium co-doped silicon[J]. Energy procedia, 2011, 8: 349-354.
[4] DHAMRIN M, SAITOH T, YAMAGA I, et al.Compensation effect of donor and acceptor impurities co-doping on the electrical properties of directionally solidified multicrystalline silicon ingots[J]. Journal of crystal growth, 2009, 311(3): 773-775.
[5] FORSTER M, DEHESTRU B, THOMAS A, et al.Compensation engineering for uniform n-type silicon ingots[J]. Solar energy materials and solar cells, 2013, 111: 146-152.
[6] LUO H Z, HE L, LEI Q, et al.Study on preparation and properties of boron-gallium co-doped multicrystalline ingots[J]. Journal of crystal growth, 2020, 546: 125784.
[7] BETEKBAEV A A, MUKASHEV B N, PELISSIER L, et al.Doping optimization of solar grade(SOG) silicon ingots for increasing ingot yield and cell efficiency[J]. Modern electronic materials, 2016, 2(3): 61-65.
[8] XIAO C Q, YANG D R, YU X G, et al.Effect of dopant compensation on the performance of Czochralski silicon solar cells[J]. Solar energy materials and solar cells, 2012, 101: 102-106.
[9] YUAN S, YU X G, HU D L, et al.Defect control based on constitutional super cooling effect in cast multi- crystalline silicon: boron-indium co-doping[J]. Solar energy materials and solar cells, 2019, 203: 110189.
[10] HUANG F, CHEN R R, GUO J J, et al.Electrical resistivity distribution of silicon ingot grown by cold crucible continuous melting and directional solidification[J]. Materials science in semiconductor processing, 2014, 23: 14-19.
[11] MAO X, YU X G, YUAN S, et al.Recombination activity of sub-grain boundaries and dislocation arrays in quasi-single crystalline silicon[J]. Applied physics express, 2019, 12: 051012.
[12] SUN J F, HE Q X, BAN B Y, et al.Effect of Sn doping on improvement of minority carrier lifetime of Fe contaminated p-type multi-crystalline Si ingot[J]. Journal of crystal growth, 2017, 458: 66-71.
[13] 孟庆超, 张运锋, 刘磊, 等. 准单晶硅铸锭过程中固液相变界面形状的控制[J]. 太阳能学报, 2015, 36(7): 1545-1549.
MENG Q C, ZHANG Y F, LIU L, et al.Melt-solid interface shape control in the casting process for quasi-single crystalline silicon ingots[J]. Acta energiae solaris sinica, 2015, 36(7): 1545-1549.
[14] HALLAM B J, WENHAM S R, HAMER P G, et al.Hydrogen passivation of B-O defects in Czochralski silicon[J]. Energy procedia, 2013, 38: 561-570.
[15] LIMA M L, MARTORANO M A, NETO J B F. Macro- segregation of impurities in a metallurgical silicon ingot after transient directional solidification[J]. Materials research, 2017, 20(4): 1129-1135.
[16] GRANT N E, SCOWCROFT J R, POINTON A I, et al.Lifetime instabilities in gallium doped mono crystalline PERC silicon solar cells[J]. Solar energy materials and solar cells, 2020, 206: 110299.
[17] LINDROOS J, YLI-KOSKI M, HAARAHILTUNEN A, et al.Light-induced degradation in copper-contaminated allium-doped silicon[J]. Physica status solidi(RRL), 2013, 7(4): 262-264.
[18] FUNG T H, KIM M, CHEN D, et al.A four-state kinetic model for the carrier-induced degradation in multi-crystalline silicon: introducing the reservoir state[J]. Solar energy materials and solar cells, 2018, 184: 48-56.
[19] NARUSHIMA T, YAMASHITA A, OUCHI C, et al.Solubilities and equilibrium distribution coefficients of oxygen and carbon in silicon[J]. Materials transactions, 2002, 43(8): 2120-2124.
[20] MOUMNI B, JABALLAH A B, AOUIDA S, et al.Study of oxygen clustering in Czochralski silicon at 450 ℃-800 ℃: correlation with thermal donors formation[J]. Physica status solidi C, 2011, 8(3): 666-669.
[21] GLUNZ S W, REIN S, KNOBLOCH J, et al.Comparison of Boron-and gallium-doped p-type Czochralski silicon for photovoltaic application[J]. Progress in photovoltaics, 1999, 7(6): 463-469.
[22] ZHOU C L, JI F X, CHENG S Z, et al.Light and elevated temperature induced degradation in B-Ga co-doped cast mono Si PERC solar cells[J]. Solar energy materials and solar cells, 2020, 211: 110508.
[23] BERTHOD C, STRANDBERG R, ODDEN J O.Temperature coefficients of compensated silicon solar cells-influence of ingot position and blend-in-ratio[J]. Energy procedia, 2015, 77: 15-20.
PDF(1972 KB)

Accesses

Citation

Detail

Sections
Recommended

/