TWO-STAGE OPTIMAL SCHEDULING CONSIDERING CCGP AND LOW-CARBON NATURE OF SOURCE SIDE AND LOAD SIDE

Zhang Panzhao, Xie Lirong, Yang Jianbin, Ma Ruizhen, Ma Wei

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 336-341.

PDF(1717 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1717 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 336-341. DOI: 10.19912/j.0254-0096.tynxb.2021-1467

TWO-STAGE OPTIMAL SCHEDULING CONSIDERING CCGP AND LOW-CARBON NATURE OF SOURCE SIDE AND LOAD SIDE

  • Zhang Panzhao1, Xie Lirong1, Yang Jianbin1, Ma Ruizhen1, Ma Wei1,2
Author information +
History +

Abstract

In the context of low-carbon economy, a two-stage scheduling model considering low-carbon nature of source side and load side and chance constrained goal programming (CCGP) is proposed to solve the global information mismatch problem caused by high carbon emission and source-load prediction error. Firstly, in the planning stage, considering the low-carbon economy and security of source-load, a scheduling model considering carbon trading and source-load uncertainty after demand response is established. Then, the adjustment stage takes into account the prediction information mismatch and incentive load, and optimizes the real-time output with the minimum output adjustment deviation. Finally, the model is transformed by deterministic equivalence theory and verified in the improved IEEE 30-bus system. The results show that the proposed model effectively reduces the system’s carbon emissions and operating costs, improves the wind power accommodation capacity and evaluates the demand for reserve capacity shortage.

Key words

carbon trading / demand response / chance constrained goal programming / reserve capacity / unit commitment

Cite this article

Download Citations
Zhang Panzhao, Xie Lirong, Yang Jianbin, Ma Ruizhen, Ma Wei. TWO-STAGE OPTIMAL SCHEDULING CONSIDERING CCGP AND LOW-CARBON NATURE OF SOURCE SIDE AND LOAD SIDE[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 336-341 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1467

References

[1] 陈胜, 卫志农, 顾伟, 等. 碳中和目标下的能源系统转型与变革:多能流协同技术[J]. 电力自动化设备, 2021, 41(9): 3-12.
CHEN S, WEI Z N, GU W, et al.Carbon neutral oriented transition and revolution of energy systems:multi-energy flow coordination technology[J]. Electric power automation equipment, 2021, 41(9): 3-12.
[2] 王振浩, 许京剑, 田春光, 等. 计及碳交易成本的含风电电力系统热电联合调度[J]. 太阳能学报, 2020, 41(12): 245-253.
WANG Z H, XU J J, TIAN C G, et al.Combined heat and power scheduling strategy considering carbon trading cost in wind power system[J]. Acta energiae solaris sinica, 2020, 41(12): 245-253.
[3] 张晓辉, 梁军雪, 赵翠妹, 等. 基于碳交易的含燃气机组的低碳电源规划[J]. 太阳能学报, 2020, 41(7): 92-98.
ZHANG X H, LIANG J X, ZHAO C M, et al.Research on low-carbon power planning with gas turbine units based on carbon transactions[J]. Acta energiae solaris sinica, 2020, 41(7): 92-98.
[4] 别朝红, 胡国伟, 谢海鹏, 等. 考虑需求响应的含风电电力系统的优化调度[J]. 电力系统自动化, 2014, 38(13): 115-120, 159.
BIE Z H, HU G W, XIE H P, et al.Optimal dispatch for wind power integrated systems considering demand response[J]. Automation of electric power systems, 2014, 38(13): 115-120, 159.
[5] 卢志刚, 郭凯, 闫桂红, 等. 考虑需求响应虚拟机组和碳交易的含风电电力系统优化调度[J]. 电力系统自动化, 2017, 41(15): 58-65.
LU Z G, GUO K, YAN G H, et al.Opitimal dispatch of power system integrated with wind power considering virtual generator units of demand response and carbon trading[J]. Automation of electric power systems, 2017, 41(15): 58-65.
[6] MA X Y, SUN Y Z, FANG H L.Scenario generation of wind power based on statistical uncertainty and variability[J]. IEEE transactions on sustainable energy, 2013, 4(4): 894-904.
[7] 张靠社, 冯培基, 张刚, 等. 考虑机会约束的多能源微电网双层优化配置[J]. 太阳能学报, 2021, 42(8): 41-48.
ZHANG K S, FENG P J, ZHANG G, et al.Bi-level optimization configuration method for multi-energy microgrid considering chance constraints[J]. Acta energiae solaris sinica, 2021, 42(8): 41-48.
[8] 赵书强, 王扬, 徐岩, 等. 基于机会约束目标规划的高风电接入比例下大规模储能与火电协调调度[J]. 中国电机工程学报, 2016, 36(4): 969-977.
ZHAO S Q, WANG Y, XU Y, et al.Coordinated dispatch of large scale energy storage system and thermal generation in high wind power penetration level system based on chance constrained goal programming[J]. Proceedings of the CSEE, 2016, 36(4): 969-977.
[9] 马燕峰, 范振亚, 刘伟东, 等. 考虑碳权交易和风荷预测误差随机性的环境经济调度[J]. 电网技术, 2016, 40(2): 412-418.
MA Y F, FAN Z Y, LIU W D, et al.Environmental and economic dispatch considering carbon trading credit and randomicity of wind power and load forecast error[J]. Power system technology, 2016, 40(2): 412-418.
[10] 刘宝碇, 赵瑞清, 王纲. 不确定规划及应用[M]. 北京: 清华大学出版社, 2003.
LIU B D, ZHAO R Q, WANG G.Uncertain programming with applications[M]. Beijing: Tsinghua University Press, 2003.
[11] 吴悔, 林舜江, 范官盛. 含风电的高维多目标安全约束机组组合问题求解方法[J]. 电网技术, 2021, 45(2): 542-553.
WU H, LIN S J, FAN G S.Solution for multi-objective security constrained unit commitment with wind power[J]. Power system technology, 2021, 45(2): 542-553.
[12] 罗超, 杨军, 孙元章, 等. 考虑备用容量优化分配的含风电电力系统动态经济调度[J]. 中国电机工程学报, 2014, 34(34): 6109-6118.
LUO C, YANG J, SUN Y Z, et al.Dynamic economic dispatch of wind integrated power system considering optimal scheduling of reserve capacity[J]. Proceedings of the CSEE, 2014, 34(34): 6109-6118.
PDF(1717 KB)

Accesses

Citation

Detail

Sections
Recommended

/