RESEARCH ON SHORT-TERM IRRADIANCE PREDICTION BASED ON WRF-SOLAR MODEL AND SCA CORRECTION

Shang Yongpeng, Guo Junhong, Song Yu, Liu Wenjiao, Ma Wenjing, Li Wei

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 274-279.

PDF(2092 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2092 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 274-279. DOI: 10.19912/j.0254-0096.tynxb.2021-1469

RESEARCH ON SHORT-TERM IRRADIANCE PREDICTION BASED ON WRF-SOLAR MODEL AND SCA CORRECTION

  • Shang Yongpeng1, Guo Junhong1, Song Yu1, Liu Wenjiao1, Ma Wenjing2, Li Wei1
Author information +
History +

Abstract

In this paper, combined with coupled stepwise clustering analysis (SCA), the real time irradiance of different weather types was simulated and predicted based on the hourly weather factor output from the WRF-Solar model. It is indicated that the combination of the SCA revised coupling model greatly reduces the error of WRF-Solar, and the simulation results are better on sunny days and sunny to cloudy days (cloudy to sunny days). The improvement is particularly obvious in rainy weather, with the relative error reduced from 64.03% to 24.71% and the root mean square error reduced from 78.02% to 38.02%. It suggests that the coupled model combined with the SCA revision method can reduce the error of WRF-Solar caused by the randomness and mutation of weather, and can simulate the trend of hourly irradiance magnificently.

Key words

weather forecast / stepwise cluster analysis / irradiance / WRF-Solar / meteorological factor

Cite this article

Download Citations
Shang Yongpeng, Guo Junhong, Song Yu, Liu Wenjiao, Ma Wenjing, Li Wei. RESEARCH ON SHORT-TERM IRRADIANCE PREDICTION BASED ON WRF-SOLAR MODEL AND SCA CORRECTION[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 274-279 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1469

References

[1] 卢奇秀. 光伏产业发展持续承压[N]. 中国能源报, 2021-09-20.
LU Q X. The development of photovoltaic industry continues to be under pressure[N]. China Energy News, 2021-09-20.
[2] RAZAGUI A, ABDELADIM K, BOUCHOUICHA K, et al.A new approach to forecast solar irradiances using WRF and libRadtran models, validated with MERRA-2 reanalysis data and pyranometer measures[J]. Solar energy, 2021, 221: 148-161.
[3] CHINTA S, BALAJI C.Calibration of WRF model parameters using multiobjective adaptive surrogate model-based optimization to improve the prediction of the Indian summer monsoon[J]. Climate dynamics, 2020, 55(3-4): 631-650.
[4] GENTILE S, DI PAOLA F, CIMINI D, et al.3D-VAR data assimilation of SEVIRI radiances for the prediction of solar irradiance in Italy using WRF solar mesoscale model: preliminary results[J]. Remote sensing, 2020, 12(6): 920.
[5] VERBOIS H, HUVA R, RUSYDI A, et al.Solar irradiance forecasting in the tropics using numerical weather prediction and statistical learning[J]. Solar energy, 2018, 162: 265-277.
[6] DIAGNE M, DAVID M, BOLAND J, et al.Post-processing of solar irradiance forecasts from WRF model at Reunion Island[J]. Solar energy, 2014, 105: 99-108.
[7] LAURET P, DIAGNE M, DAVID M.A neural network post-processing approach to improving NWP solar radiation forecasts[J]. Energy procedia, 2014, 57: 1044-1052.
[8] 孙银川, 白永清, 左河疆. 宁夏本地化WRF辐射预报订正及光伏发电功率预测方法初探[J]. 中国沙漠, 2012, 32(6): 1738-1742.
SUN Y C, BAI Y Q, ZUO H J.Correction of solar radiation forecast and photovoltaic power prediction in Ningxia by localization WRF model[J]. Journal of desert research, 2012, 32(6): 1738-1742.
[9] 黄鹤, 王佳, 刘爱霞, 等. TJ-WRF逐时地面太阳辐射的预报订正[J]. 高原气象, 2015, 34(5): 1445-1451.
HUANG H, WANG J, LIU A X, et al.Correction on forecasting of hourly surface solar radiation based on TJ-WRF model[J]. Plateau meteorology, 2015, 34(5): 1445-1451.
[10] 叶林. 基于WRF模式输出的光伏发电量预测研究[D]. 银川: 宁夏大学, 2018.
YE L.Power forecasting model for photocoltaic plants generation based on the output of WRF mode[J]. Yinchuan: Ningxia University, 2018.
[11] 白永清, 陈正洪, 王明欢, 等. 基于WRF模式输出统计的逐时太阳总辐射预报初探[J]. 大气科学学报, 2011, 34(3): 363-369.
BAI Y Q, CHEN Z H, WANG M H, et al.Preliminary research on prediction of hourly solar radiation based on WRF model output statistics[J]. Transactions of atmospheric sciences, 2011, 34(3): 363-369.
[12] 何晓凤, 周荣卫, 申彦波, 等. 基于WRF模式的太阳辐射预报初步试验研究[J]. 高原气象, 2015, 34(2): 463-469.
HE X F, ZHOU R W, SHEN Y B, et al.Preliminary study on solar radiation forecasting with WRF model[J]. Plateau meteorology, 2015, 34(2): 463-469.
[13] 邓伟, 陈海波, 马振升, 等. NCEP FNL全球分析资料的解码及其图形显示[J]. 气象与环境科学, 2009, 32(3): 78-82.
DENG W, CHEN H B, MA Z S, et al.Decoding and graphic display of the NCEP FNL global analysis data[J]. Meteorological and environmental sciences, 2009, 32(3): 78-82.
[14] 赵志远, 刘丹, 郭炜, 等. 气溶胶光学厚度对辐照度预报的影响[J]. 太阳能, 2018(11): 52-59.
ZHAO Z Y, LIU D, GUO W, et al.Influence of aerosol optical thickness on irradiance prediction[J]. Solar energy, 2018(11): 52-59.
[15] YANG J, KIM J H, JIMÉNEZ P A, et al. An efficient method to identify uncertainties of WRF-Solar variables in forecasting solar irradiance using a tangent linear sensitivity analysis[J]. Solar energy, 2021, 220: 509-522.
[16] 常淳, 冯平, 孙冬梅, 等. 基于逐步聚类分析的水库浮游藻类生长预测[J]. 中国环境科学, 2015, 35(9): 2805-2812.
CHANG C, FENG P, SUN D M, et al.Prediction of the alga growth in a reservoir based on the stepwise cluster analysis[J]. China environmental science, 2015, 35(9): 2805-2812.
[17] 杜月文. 基于逐步聚类分析的山东省未来温度变化预测[D]. 北京: 华北电力大学, 2018.
DU Y W.Prediction of future temperature changes in Shandong, China through a stepwise cluster analysis approach[D]. Beijing: North China Electric Power University, 2018.
[18] GUEYMARD C, JIMENEZ P A.Validation of real-time solar irradiance simulations over Kuwait using WRF-solar[C]//12th International Conference on Solar Energy for Buildings and Industry, EuroSun2018, Rapperswil, Switzerland, 2018.
[19] 胡向军, 陶健红, 郑飞, 等. WRF模式物理过程参数化方案简介[J]. 甘肃科技, 2008, 24(20): 73-75.
HU X J, TAO J H, ZHENG F, et al.Introduction to parameterization scheme of WRF model physical process[J]. Gansu science and technology, 2008, 24(20): 73-75.
[20] 徐华. 中国太阳辐射区域影响因子研究[D]. 青岛: 中国海洋大学, 2013.
XU H.The study of impact factors of solar radiation in paticular areas of China[D]. Qingdao: Ocean University of China, 2013.
PDF(2092 KB)

Accesses

Citation

Detail

Sections
Recommended

/