CORA DATA-BASED STUDY ON SPACE-TIME CHARACTERISTICS OF THERMAL ENERGY IN SOUTH CHINA SEA

Ding Jie, Wu Guowei, Jiang Bo, Hou Erhu, Bai Yang, Wang Xiaoyong

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (1) : 402-409.

PDF(5177 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5177 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (1) : 402-409. DOI: 10.19912/j.0254-0096.tynxb.2021-1507

CORA DATA-BASED STUDY ON SPACE-TIME CHARACTERISTICS OF THERMAL ENERGY IN SOUTH CHINA SEA

  • Ding Jie, Wu Guowei, Jiang Bo, Hou Erhu, Bai Yang, Wang Xiaoyong
Author information +
History +

Abstract

According to the China Ocean Reanalysis (CORA) of daily average temperature in the South China Sea (SCS) from 2000 to 2013, this paper analyzes the geographical distribution of thermal energy in the SCS different seasons and years and its change by calculating temperature difference between the sea surface (5 m) and deep sea (1000 m), Carnot efficiency, effective head, volume of warm water and available exploitation amount of thermal energy. The results show that: 1) The temperature difference in the deep sea of more than 1000 m is adequate to generate efficient net power, which is available through out the year. Its distribution varies from season to season, it is highest in summer, followed by autumn and spring and winter. From the Spratly Islands to the western part of Luzon Island, it is usually hot all year round. 2) South of the Zhongsha Islands has the highest Carnot with the lowest fluctuation. The highest efficient month is from May to August. 3) The annual average effective head is 774 m-945 m in the SCS. It is highest in the Middle East and south of the SCS, and it is more than 850 m from the southwest to the northeast. It increases by 2.0 m-3.0 m year on year in the central and southern SCS and the Western Luzon Island. 4) The monthly change of warm water volume in the SCS is in a "V-shaped" distribution. The warm water volume in winter is high, above 8.50×1013 m3. The average volume is 7.31×1013 m3 per year, with an increase of 0.165×1013 m3/a. 5) In 14 years. The average amount of thermal energy that can be exploited in the SCS is 238.86 GW, with an increase of 5.61 GW/a. Therefore, there is great prospect in exploiting the thermal energy in the SCS.

Key words

thermal energy / ocean thermal energy conversion / renewable energy resources / Carnot efficiency / effective head / warm water volume / available exploitation amount

Cite this article

Download Citations
Ding Jie, Wu Guowei, Jiang Bo, Hou Erhu, Bai Yang, Wang Xiaoyong. CORA DATA-BASED STUDY ON SPACE-TIME CHARACTERISTICS OF THERMAL ENERGY IN SOUTH CHINA SEA[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 402-409 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1507

References

[1] 苏佳纯, 曾恒一, 肖钢, 等. 海洋温差能发电技术研究现状及在我国的发展前景[J]. 中国海上油气, 2012, 24(4): 84-98.
SU J C, ZENG H Y, XIAO G, et al.Research status and prospect ocean thermal energy conversion technology[J]. China offshore oil and gas, 2012, 24(4): 84-98.
[2] BUUD K, FRANK N.Ocean thermal energy conversion: technology brief[R]. IRENA Ocean Energy Technology Brief 1, 2014.
[3] OWENS W L, TRIMBLE L C.Mini-OTEC operational results[J]. Journal of solar energy engineering, 1981, 103(3): 233-240.
[4] LENNARD D E.Ocean thermal energy conversion—past progress and future prospects[J]. IEE proceedings A (physical science, measurement and instrumentation, management and education, reviews), 1987, 134(5): 381-391.
[5] VANZWIETEN J H, RAUCHENSTEIN L T, LEE L.An assessment of Florida’s ocean thermal energy conversion (OTEC) resource[J]. Renewable and sustainable energy reviews, 2017, 75: 683-691.
[6] KIM H J, KIM A S.Ocean thermal energy conversion (OTEC): past, present, and progress[M]. London:IntechOpen, 2020.
[7] 刘伟民, 陈凤云, 王义强, 等. 海洋温差能闭式循环进展及新型循环系统研究[C]//中国可再生能源学会2011年学术年会论文集, 北京, 2011: 41-44.
LIU W M, CHEN F Y, WANG Y Q, et al.Progress of Closed-cycle OTEC and study of a new cycle of OTEC[C]//Proceeding of 2011 Academic Annual Meeting of China Renewable Energy Society, Beijing, 2011: 41-44.
[8] RAJAGOPALAN K, NIHOUS G C.Estimates of global Ocean Thermal Energy Conversion (OTEC) resources using an ocean general circulation model[J]. Renewable energy, 2013, 50(6): 532-540.
[9] RAUCHENSTEIN L T, VANZWIETEN J H, HANSON H P.Model-based global assessment of OTEC resources with data validation off Southeast Florida[C]//OCEANS 2011 IEEE-Spain, Santander, Spain, 2011: 1-5.
[10] VANZWIETEN J H, RAUCHENSTEIN L T, HANSON H P, et al.Assessment of HYCOM as a tool for estimating Florida’s OTEC potential[C]//OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 2011: 1-8.
[11] TRENGGONO M, HIDAYAT R R, CAHYO T N, et al.An assessment Indonesia’s Ocean Thermal Energy Conversion (OTEC) as an electrical energy resource[J]. IOP conference series earth and environmental science, 2021, 746(1): 012041.
[12] 岳娟, 于汀, 李大树, 等. 国内外海洋温差能发电技术最新进展及发展建议[J]. 海洋技术学报, 2017, 36(4): 82-87.
YUE J, YU T, LI D S, et al.Study on the up-to-date progress and suggestions for ocean thermal energy conversion technologies[J]. Journal of ocean technology, 2017, 36(4): 82-87.
[13] White Paper Ocean Thermal Energy Conversion[R]. The Executive Committee of the IEA Ocean Energy Systems (OES), 2021.
[14] RAJAGOPALAN K, NIHOUS G C.An assessment of global ocean thermal energy conversion resources under broad geographical constraints[J]. Journal of renewable & sustainable energy, 2013, 5(6): 370-401.
[15] 闫恒乾, 王辉赞, 周树道, 等. 基于SODA资料的太平洋及我国周边海域温差能资源时空特征分析[J]. 海洋学报, 2017, 39(11): 128-140.
YAN H Q, WANG H Z, ZHOU S D, et al.Analysis on the temporal and spatial characteristics of the thermal energy in the Pacific Ocean and the sea area surrounding China base on SODA data[J]. Acta oceanologica sinica, 2017, 39(11): 128-140.
[16] WICK G L, SCHMITT R.Prospects for renewable energy from the sea[J]. Marine technology society journal, 1977, 11(5): 16-21.
[17] 王海鹰, 朱彤, 黄晓艳. 我国海洋温差能资源评估的若干难点探讨[C]//2010中国可再生能源科技发展大会论文集, 北京, 2010: 2550-2553.
WANG H Y, ZHU T, HUANG X Y.Issues about China ocean thermal energy resource assessment[C]//Conference on China Technological Development of Renewable Energy Source, Beijing, 2010: 2550-2553.
[18] HAN G J, LI W, ZHANG X F, et al.A new version of regional ocean reanalysis for coastal waters of China and adjacent seas[J]. Advances in atmospheric sciences, 2013, 30(4): 974-982.
[19] ESRI Arcgis10.2: Useing ArcGIS Geostatiscal Analyst[R]. 2013.
[20] 王传崑, 卢苇. 海洋能资源分析方法及储量评估[M]. 北京: 海洋出版社, 2009.
WANG C K, LU W.Analysis ocean energy resource analysis method and reserve evaluation[M]. Beijing: China Ocean Press, 2009.
[21] 杨海军, 刘秦玉. 南海上层水温分布的季节特征[J]. 海洋与湖沼, 1998(5): 501-507.
YANG H J, LIU Q Y.The seasonal features of temperature distributions in the upper layer of the South China Sea[J]. Oceanologia et limnologia sinica, 1998(5): 501-507.
[22] 林锡贵. 冬、 夏季风转换期间南海南部海区的气象特征[J]. 广东气象, 2003(1): 10-12.
LIN X G.Meteorological features of southern South China Sea area during winter and summer monsoon transition period[J]. Guangdong meteorology, 2003(1): 10-12.
[23] JIANG B, WEI Y, DING J, et al.Trends of sea surface wind energy over the South China Sea[J]. Journal of Oceanology and limnology, 2019, 37(5): 1510-1522.
[24] 贾旭晶, 刘秦玉, 孙即霖. 1998年5-6月南海上混合层、温跃层不同定义的比较[J]. 海洋湖沼通报, 2001, 23(1): 1-7.
JIA X J, LIU Q Y, SUN J L.A comparison between two different definitions of the mixlayer and the thermocline in the South China Sea[J]. Transactions of oceanology and limnology, 2001, 23(1): 1-7.
[25] GB/T 12763.7—2007,海洋调查规范第7部分: 海洋调查资料交换B/T 12763.7—2007,海洋调查规范第7部分: 海洋调查资料交换[S], 2017.
GB/T 12763.7—2007,The specifications for oceanographic survey Part 7: exchange of oceanographic survey dataB/T 12763.7—2007,The specifications for oceanographic survey Part 7: exchange of oceanographic survey data[S], 2017.
[26] 蒋国荣,郝少东, 杜涛, 等. 南海北部温跃层逐月变化特征分析[J]. 海洋预报, 2011, 28(3): 40-45.
JIANG G R, HAO S D, DU T, et al.Monthly variabilities of the thermocline in the Northern South China Sea[J]. Marine forecasts, 2011, 28(3): 40-45.
[27] 周燕遐. 南海海洋温度跃层统计分析[D]. 青岛: 中国海洋大学, 2002.
ZHOU Y X.Statistical analys is ocean thermocline on the South China Sea[D]. Qingdao: Ocean University of China, 2002.
[28] 武扬, 程国胜. 南海混合层深度的季节和年际变化特征[J]. 海洋预报, 2013, 30(3): 9-17.
WU Y, CHENG G S.Seasonal and inter-annual variations of the mixed layer depth in the South China Sea[J]. Marine forecasts, 2013, 30(3): 9-17.
[29] 韩家新. 中国近海海洋:海洋可再生能源[M]. 北京: 海洋出版社, 2015.
HAN J X.China’s offshore oceans: marine renewable energy[M]. Beijing: China Ocean Press, 2015.
PDF(5177 KB)

Accesses

Citation

Detail

Sections
Recommended

/