OPTIMIZATION MODEL OF POWER DISTRIBUTION OF WIND FARMS CONSIDERING NOISE IMPACT

Jin Qiuxia, Peng Peng, Sun Pingling, Xu Jingsong, Zhao Guoqun, Zhou Minqiang

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 115-124.

PDF(1873 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1873 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 115-124. DOI: 10.19912/j.0254-0096.tynxb.2021-1525

OPTIMIZATION MODEL OF POWER DISTRIBUTION OF WIND FARMS CONSIDERING NOISE IMPACT

  • Jin Qiuxia1,2, Peng Peng1,2, Sun Pingling1,2, Xu Jingsong1,2, Zhao Guoqun1,2, Zhou Minqiang1,2
Author information +
History +

Abstract

A power distribution algorithm of wind farms considering noise impact is proposed to achieve the power distribution command from the power grid while minimizing the noise generated by the wind turbine operation. Polynomial fitting method is adopted to determine the relationship between the active power and the noise produced from wind turbines based on the real data. Then, the relationship between the active power and the noise at the observation site is built according to the calculation method provided by GB/T 17247.2—1998. Next, a multi-objective optimization model concerning power control and on-off switching state is established with the constraint of environmental noise limit constraints, and genetic algorithm is used to obtain solutions. Finally, it is approved that this power distribution model can effectively satisfy the power limitation requirement of the grid and also reduce the noise of turbines, and the universality of the presented model are verified through three cases with different distributions of observation sites.

Key words

wind farm / wind turbines / active power distribution / noise / multi-objective optimization

Cite this article

Download Citations
Jin Qiuxia, Peng Peng, Sun Pingling, Xu Jingsong, Zhao Guoqun, Zhou Minqiang. OPTIMIZATION MODEL OF POWER DISTRIBUTION OF WIND FARMS CONSIDERING NOISE IMPACT[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 115-124 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1525

References

[1] Global Wind Energy Council. Global Wind Report2022[R/OL]. (2022-04-04)[2023-03-24]. https://gwec.net/global-wind-report-2022/.
[2] ONAKPOYA I J, O'SULLIVAN J, THOMPSON M J, et al. The effect of wind turbine noise on sleep and quality of life: a systematic review and meta-analysis of observational studies[J]. Environment international, 2015, 82: 1-9.
[3] BRȦUNER E V, JØRGENSEN J T, DUUN-HENRIKSEN A K, et al. Long-term wind turbine noise exposure and the risk of incident atrial fibrillation in the Danish Nurse cohort[J]. Environment international, 2019, 130: 104915.
[4] FREIBERG A, SCHEFTER C, GIRBIG M, et al.Health effects of wind turbines on humans in residential settings: Results of a scoping review[J]. Environmental research, 2019, 169: 446-463.
[5] DESHMUKH S, BHATTACHARYA S, JAIN A, et al.Wind turbine noise and its mitigation techniques: a review[J]. Energy procedia, 2019, 160: 633-640.
[6] MERINO-MART NEZ R, PIEREN R, SCHFFER B. Holistic approach to wind turbine noise: from blade trailing-edge modifications to annoyance estimation[J]. Renewable and sustainable energy reviews, 2021, 148: 111285.
[7] PIEREN R, HEUTSCHI K, M LLER M, et al. Auralization of wind turbine noise: emission synthesis[J]. Acta acustica united with acustica, 2014, 100: 25-33.
[8] 汤奕, 王琦, 陈宁, 等. 采用功率预测信息的风电场有功优化控制方法[J]. 中国电机工程学报, 2012, 32(34): 29-35.
TANG Y, WANG Q, CHEN N, et al.An optimal active power control method of wind farms based on wind power forecasting[J]. Proceedings of the CSEE, 2012, 32(34): 29-35.
[9] 邹见效, 李丹, 郑刚, 等. 基于机组状态分类的风电场有功功率控制策略[J]. 电力系统自动化, 2011, 35(24): 28-32.
ZOU J X, LI D, ZHENG G, et al.An active power control scheme for wind farms based on state classification algorithm[J]. Automation of electric power systems, 2011, 35(24): 28-32.
[10] 刘军, 张彬彬, 赵晨聪. 基于数据驱动的风电场有功功率分配算法[J]. 电力系统自动化, 2019, 43(17): 125-137.
LIU J, ZHANG B B, ZHAO C C.Data-driven based active power distribution algorithm in wind farm[J]. Automation of electric power systems, 2019, 43(17): 125-137.
[11] 肖运启, 孙芳. 一种提高风电机组调度可靠性的风电场功率控制策略[J]. 太阳能学报, 2015, 36(12): 2888-2894.
XIAO Y Q, SUN F.Power control strategy of wind farm through improving scheduling reliability of wind turbine[J]. Acta energiae solaris sinica, 2015, 36(12): 2888-2894.
[12] 刘军, 汪继勇. 基于风电机组健康状态的风电场功率分配研究[J]. 电力系统保护与控制, 2020, 48(20): 106-113.
LIU J, WANG J Y.Research on power distribution of a wind farm based on the healthy state of wind turbines[J]. Power system protection and control, 2020, 48(20): 106-113.
[13] 孙辉, 徐箭, 孙元章, 等. 基于混合整数线性规划的风电场有功优化调度[J]. 电力系统自动化, 2016, 40(22): 27-33.
SUN H, XU J, SUN Y Z, et al.Active power optimization scheduling of wind farm based on mixed-integer linear programming[J]. Automation of electric power systems, 2016, 40(22): 27-33.
[14] 肖运启, 贺贯举. 大型风电机组限功率运行特性分析及其优化调度[J]. 电力系统自动化, 2014, 38(20): 18-25.
XIAO Y Q, HE G J.Power-limited operation characteristic analysis and optimal scheduling for large scale wind turbines[J]. Automation of electric power systems, 2014, 38(20): 18-25.
[15] WU X W, HU W H, HUANG Q, et al.Optimal power dispatch strategy of onshore wind farms considering environmental impact[J]. International journal of electrical power & energy systems, 2020, 116(12): 105548.
[16] OERLEMANS S.Prediction of wind turbine noise and comparison with experiment[R]. National Aerospace Laboratory NLR, 2007.
[17] HUBBARD H H, SHEPHERD K P.Aeroacoustics of large wind turbines[J]. Journal of the Acoustical Society of America, 1991, 89(6): 2495-2508.
[18] GB/T 17247.2—1998, 声学户外声传播的衰减第2部分: 一般计算方法[S].
GB/T 17247.2—1998, Acoustics—Attenuation of sound during propagation outdoors—Part 2: General method of calculation[S].
[19] GB3096—2008, 声环境质量标准[S].
GB3096—2008, Environmental quality standard for noise[S].
[20] HAN X Q, QU Y, WANG P, et al.Four-dimensional wind speed model for adequacy assessment of power systems with wind farms[J]. IEEE transactions on power systems, 2013, 28(3): 2978-2985.
[21] HOLLAND J H.Adaptation in natural and artificial systems[M]. Cambridge: MIT Press, 1975.
PDF(1873 KB)

Accesses

Citation

Detail

Sections
Recommended

/