DESIGN AND ANALYSIS OF HIGH TEMPERATURE MOLTEN-SALT STORAGE TANK UNDER CYCLIC LOADING

Cai Jun, Liu Changjun, Guo Hongxing, Tan Jianping, Zeng Xin, Ye Dongting

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 516-521.

PDF(1721 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1721 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 516-521. DOI: 10.19912/j.0254-0096.tynxb.2021-1540

DESIGN AND ANALYSIS OF HIGH TEMPERATURE MOLTEN-SALT STORAGE TANK UNDER CYCLIC LOADING

  • Cai Jun1, Liu Changjun1, Guo Hongxing1, Tan Jianping1, Zeng Xin1, Ye Dongting2
Author information +
History +

Abstract

Taking a high temperature molten-salt storage tank of a large-scale solar thermal power tower station as the research object and according to results of transient thermal-mechanical stress analysis, ratchetting failure and creep-fatigue failure of the storage tank are evaluated based on ASME code. The results show that ratchetting failure of the storage tank will not occur under normal and abnormal conditions. Compared to ratchetting strain of structure under normal condition, the strain under abnormal condition increases by 72%, due to the temperature difference (165 ℃) on the wall of tank. Storage tank will occur creep-fatigue failure under abnormal condition and the value of creep damage and fatigue damage increase by 1.4 times and 9 times respectively compared with normal condition which does not fail. It is suggested that a molten-salt buffer tank is recommended to reduce the hazard to structure caused by temperature fluctuation of molten salt.

Key words

solar energy / thermal energy storage / finite element method / creep-fatigue / ratchetting

Cite this article

Download Citations
Cai Jun, Liu Changjun, Guo Hongxing, Tan Jianping, Zeng Xin, Ye Dongting. DESIGN AND ANALYSIS OF HIGH TEMPERATURE MOLTEN-SALT STORAGE TANK UNDER CYCLIC LOADING[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 516-521 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1540

References

[1] 王康. 光热发电“十四五”: 破局发展的关键期[J]. 能源, 2020(增刊1): 70-74.
WANG K.Photothermal "The 14th five-year plan": the critical period of development[J]. Energy, 2020(Sup1): 70-74.
[2] 佚名. 新月沙丘光热电站发生储罐漏盐事故暂时停运[EB/OL]. [2016-12-05].https://guangfu.bjx.com.cn/news/20161205/793936.shtml.
Anon. Solar thermal power station of crescent dunes was temporarily suspended due to leakage of storage tank[EB/OL].[2016-12-05]. https://guangfu.bjx.com.cn/news/201 61205/793936.shtml.
[3] FLUECKIGER S, YANG Z, GARIMELLA S V.An integrated thermal and mechanical investigation of molten-salt thermocline energy storage[J]. Applied energy, 2011, 88(6): 2098-2105.
[4] FLUECKIGER S M, YANG Z, GARIMELLA S V.Review of molten-salt thermocline tank modeling for solar thermal energy storage[J]. Heat transfer engineering, 2013, 34(10): 787-800.
[5] FLUECKIGER S M, YANG Z, GARIMELLA S V.Thermomechanical simulation of the solar one thermocline storage tank[J]. Journal of solar energy engineering, 2012, 134(4): 041014.
[6] 王昕. 大型熔盐储罐应力分析及预热和进盐瞬态模拟[D]. 北京: 北京化工大学, 2020.
WANG X.Stress analysis and transient simulation on heating and filling process of large molten-salt storage tank[D]. Beijing: Beijing University of Chemical Technology, 2020.
[7] ZENG X S, WANG X, LI H F, et al.Strength and creep-fatigue analysis of a molten-salt storage tank[C]//2019 International Conference on Artificial Intelligence and Advanced Manufacturing(AIAM), Dublin, Ireland, 2019: 742-746.
[8] 高肖肖. 熔盐储罐的结构设计与性能研究[D]. 西安: 西北大学, 2018.
GAO X X.Structure design and performance study of molten salt tank[D]. Xi'an: Northwest University, 2018.
[9] Section Ⅲ, division 1, subsection NH, class 1, components in elevated temperature services, ASME boiler and pressure vessel code[S].
[10] 王昕, 钱才富. 非锚固式大型立式熔盐储罐热疲劳分析[J]. 压力容器, 2018, 35(4): 31-35.
WANG X, QIAN C F.Thermal fatigue analysis of an unanchored large vertical melt salt storage tank[J]. Pressure vessel technology, 2018, 35(4): 31-35.
[11] Section Ⅱ, materials, part D, properties, ASME boiler and pressure vessel code[S].
[12] 曾鑫, 刘长军, 蔡君, 等. 高温熔盐储罐热缓冲装置及高温熔盐储罐: 202121267972.9[P].2021-11-26.
ZENG X, LIU C J, CAI J, et al. High temperature molten-salt storage tank thermal buffering device and high temperature molten-salt storage tank: 202121267972.9[P].2021-11-26.
PDF(1721 KB)

Accesses

Citation

Detail

Sections
Recommended

/