DESIGN OF PHASE-LOCKED LOOP OF GRID CONNECTED CONVERTER BASED ON ACTIVE DISTURBANCE REJECTION CONTROL

Yang Tianxiang, Cheng Zhijiang, Yang Handi, Tian Feng

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 147-155.

PDF(3178 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3178 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 147-155. DOI: 10.19912/j.0254-0096.tynxb.2021-1542

DESIGN OF PHASE-LOCKED LOOP OF GRID CONNECTED CONVERTER BASED ON ACTIVE DISTURBANCE REJECTION CONTROL

  • Yang Tianxiang, Cheng Zhijiang, Yang Handi, Tian Feng
Author information +
History +

Abstract

In a high proportion of renewable energy infiltration penetration, the power system presents low inertia damping characteristics. The traditional synchronous reference coordinate phase-locked loop (SRF-PLL) based on PI controller is more vulnerable to the fluctuation of new energy, resulting in poor phase-locked output results, which leads to a series of oscillation problems of grid-following converter. A phase-locked loop based on first-order linear ADRC (LADRC-PLL) is proposed. By comparing and analyzing the frequency domain characteristics of first-order LADRC-PLL and traditional phase-locked loop based on PI controller (PI-PLL), the advantages of its disturbance rejection performance are explained. A simple parameter design method is proposed to simplify the parameter design of PLL. Under the same bandwidth scale comparison, it shows the limitations of the application of high-order LADRC in the phase-locked loop of grid connected converter. The simulation of PLL and the experimental results based on hybrid active neutral point clamped (HANPC) grid connected converter show that the proposed LADRC-PLL has more accurate phase locking results in disturbed environment, and is more suitable for new power systems with high proportion of renewable energy.

Key words

wind power / grid connected converter / renewable energy / phase locked loop / active disturbance rejection

Cite this article

Download Citations
Yang Tianxiang, Cheng Zhijiang, Yang Handi, Tian Feng. DESIGN OF PHASE-LOCKED LOOP OF GRID CONNECTED CONVERTER BASED ON ACTIVE DISTURBANCE REJECTION CONTROL[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 147-155 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1542

References

[1] 陈胜, 卫志农, 顾伟, 等. 碳中和目标下的能源系统转型与变革: 多能流协同技术[J]. 电力自动化设备, 2021, 41(9): 3-12.
CHEN S, WEI Z N, GU W, et al.Carbon neutral oriented transition and revolution of energy systems: multi-energy flow coordination technology[J]. Electric power automation equipment, 2021, 41(9): 3-12.
[2] 张勇, 彭勇刚, 韦巍. 计及制氢效率的光-储-氢系统协调控制策略研究[J]. 太阳能学报, 2021, 42(11): 67-75.
ZHANG Y, PENG Y G, WEI W.Coordination control for PV, storage and hydrogen system considering hydrogen energy conversion efficiency[J]. Acta energiae solaris sinica, 2021, 42(11): 67-75.
[3] ROCABERT J.Control of power converters in AC microgrids[J]. IEEE transactions on power electronics, 2012, 27(11): 4734-4749.
[4] 张宇, 张琛, 蔡旭, 等. 并网变换器的暂态同步稳定性分析:稳定域估计与镇定控制[J]. 中国电机工程学报, 2022, 42(21): 7871-7884.
ZHANG Y, ZHANG C, CAI X, et al.Transient grid-synchronization stability analysis of grid-tied voltage source converters: stability region estimation and stabilization control[J]. Proceedings of the CSEE, 2022, 42(21): 7871-7884.
[5] 郭永辉, 张新燕, 李振恩, 等. 基于锁相环的寄生反馈通道参与双馈风电并网SSCI现象研究[J]. 太阳能学报, 2020, 41(5): 182-190.
GUO Y H, ZHANG X Y, LI Z E, et al.Research on mechanism of phase-locked loop participating in SSCI of DFIG grid connection[J]. Acta energiae solaris sinica, 2020, 41(5): 182-190.
[6] 朱艺锋, 徐慧春, 岳豪, 等. 含复系数滤波器锁相环的弱电网稳定性分析[J]. 太阳能学报, 2021, 42(10): 9-16.
ZHU Y F, XU H C, YUE H, et al.Stability analysis of weak grid with complex coefficient filter phase-locked loop[J]. Acta energiae solaris sinica, 2021, 42(10): 9-16.
[7] 田桂珍, 王生铁, 林百娟, 等. 风力发电系统中基于双同步参考坐标变换的锁相环设计与实现[J]. 太阳能学报, 2011, 32(2): 204-209.
TIAN G Z, WANG S T, LIN B J, et al.Design and realization of phase locked loop based on double synchronous reference frame in wind power system[J]. Acta energiae solaris sinica, 2011, 32(2): 204-209.
[8] 李泉峰, 陈明亮. 低电压穿越期间风电变流器锁相环改进[J]. 太阳能学报, 2016, 37(11): 2800-2806.
LI Q F, CHEN M L.A novel phase-locked loop for wind power system under LVRT condition[J]. Acta energiae solaris sinica, 2016, 37(11): 2800-2806.
[9] 朱建红, 黄琼, 孟棒棒. 基于αβ分量滤波直接解耦风电并网锁相环设计[J]. 电力系统保护与控制, 2018, 46(24): 135-141.
ZHU J H, HUANG Q, MENG B B.Direct decoupling wind power grid-connected phase-locked loop design based on αβ component filtering[J]. Power system protection and control, 2018, 46(24): 135-141.
[10] 朱建红, 顾菊平, 孟棒棒, 等. 软硬锁相环在分布式风电并网控制中的联合应用[J]. 太阳能学报, 2022, 43(1): 36-43.
ZHU J H, GU J P, MENG B B, et al.Integrated application of software and hardware phase-locked loop on grid connection control for distributed wind power[J]. Acta energiae solaris sinica, 2022, 43(1): 36-43.
[11] 马幼捷, 陶珑, 周雪松, 等. 结合自抗扰的风电系统电压环模糊自适应控制[J]. 太阳能学报, 2020, 41(12): 330-337.
MA Y J, TAO L, ZHOU X S, et al.Fuzzy adaptive control of voltage loop in wind power system combined with linear active disturbance rejection control[J]. Acta energiae solaris sinica, 2020, 41(12): 330-337.
[12] GUO B, BACHA S, ALAMIR M, et al.An enhanced phase-locked loop with extended state observer[C]//2019 20th International Symposium on Power Electronics, Novi Sad, Serbia, 2019: 1-6.
[13] 张威, 李永丽, 李涛, 等. 适用于非理想条件下的自适应自抗扰锁相环技术[J]. 电力系统及其自动化学报, 2021, 33(9): 74-81.
ZHANG W, LI Y L, LI T, et al.Technology of adaptive phase-locked loop based on ADRC under non-ideal conditions[J]. Proceedings of the CSU-EPSA, 2021, 33(9): 74-81.
[14] GOLESTAN S, MONFARED M, FREIJEDO F D.Design-oriented study of advanced synchronous reference frame phase-locked loops[J]. IEEE transactions on power electronics, 2013, 28(2): 765-778.
[15] 张超, 朱纪洪, 高亚奎. 自抗扰控制器的阶次与参数的选取[J]. 控制理论与应用, 2014, 31(11): 1480-1485.
ZHANG C, ZHU J H, GAO Y K.Order and parameter selections for active disturbance rejection controller[J]. Control theory & applications, 2014, 31(11): 1480-1485.
[16] JIN H Y, Chen Y, LAN W Y.Replacing PI control with first-order linear ADRC[C]//2019 IEEE 8th Data Driven Control and Learning Systems Conference, Dali, China, 2019: 1097-1101.
[17] GAO Z Q.Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference, Denver, Colorado, USA, 2003: 4989-4996.
[18] PREITL S, PRECUP R.An extension of tuning relations after symmetrical optimum method for PI and PID controllers[J]. Automatica, 1999, 35(10): 1731-1736.
PDF(3178 KB)

Accesses

Citation

Detail

Sections
Recommended

/