NUMERICAL SIMULATIONS ON THERMAL PERFORMANCES OF PASSIVE SOLAR VENTILATED WALLS WITH LATENT HEAT STORAGE IN WINTER

Chen Jiahui, Kang Xin

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 522-530.

PDF(2745 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2745 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (4) : 522-530. DOI: 10.19912/j.0254-0096.tynxb.2021-1545

NUMERICAL SIMULATIONS ON THERMAL PERFORMANCES OF PASSIVE SOLAR VENTILATED WALLS WITH LATENT HEAT STORAGE IN WINTER

  • Chen Jiahui1, Kang Xin1,2
Author information +
History +

Abstract

Adding phase change materials (PCMs) to building ventilation wall is considered to be an effective means to improve its thermal performance in winter. PCMs can be packaged macroscopically in the wall by the method of block. At this time, the phenomenon of natural convection generated in the melting process of materials is very significant and cannot be ignored. In this paper, thermal performances of passive solar ventilation walls with latent heat storage are studied, by using the numerical solver developed based on the open-source CFD framework OpenFOAM. Physical processes of heat transfer, flow dynamics, and phase change of materials are accurately predicted. The results show that the thermal storage wall of PCMs can effectively reduce the fluctuation of indoor temperature. In addition, natural convection in the PCMs greatly affects the melting and solidification rate of materials. Therefore, the length-to-width ratios of PCMs and its blocking-arrangements should be carefully selected.

Key words

phase change materials / passive solar buildings / numerical simulation / ventilated wall / enthalpy porosity method

Cite this article

Download Citations
Chen Jiahui, Kang Xin. NUMERICAL SIMULATIONS ON THERMAL PERFORMANCES OF PASSIVE SOLAR VENTILATED WALLS WITH LATENT HEAT STORAGE IN WINTER[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 522-530 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1545

References

[1] PACHECO R, ORDÓÑEZ J, MARTÍNEZ G. Energy efficient design of building: a review[J]. Renewable and sustainable energy reviews, 2012, 16(6): 3559-3573.
[2] SADINENI S B, MADALA S, BOEHM R F.Passive building energy savings: a review of building envelope components[J]. Renewable and sustainable energy reviews, 2011, 15(8): 3617-3631.
[3] SEFERIS P, STRACHAN P, DIMOUDI A, et al.Investigation of the performance of a ventilated wall[J]. Energy and buildings, 2011, 43(9): 2167-2178.
[4] CIAMPI M, LECCESE F, TUONI G.Ventilated facades energy performance in summer cooling of buildings[J]. Solar energy, 2003, 75(6): 491-502.
[5] IBAÑEZ-PUY M, VIDAURRE-ARBIZU M, SACRISTÁN-FERNÁNDEZ J A, et al. Opaque Ventilated Façades: thermal and energy performance review[J]. Renewable and sustainable energy reviews, 2017, 79: 180-191.
[6] 张维维, 程建杰, 张源, 等. 双层相变材料砌块的全年应用效果研究[J]. 太阳能学报, 2019, 40(6): 1519-1526.
ZHANG W W, CHENG J J, ZHANG Y, et al.Research on year-round application effect of double layer phase change materials block[J]. Acta energiae solaris sinica, 2019, 40(6): 1519-1526.
[7] FARAJ K, KHALED M, FARAJ J, et al.A review on phase change materials for thermal energy storage in buildings: heating and hybrid applications[J]. Journal of energy storage, 2021, 33: 101913.
[8] 王鑫, 方建华, 刘坪, 等. 相变材料的研究进展[J]. 功能材料, 2019, 50(2): 2070-2075.
WANG X, FANG J H, LIU P, et al.Research progress of phase change materials[J]. Journal of functional materials, 2019, 50(2): 2070-2075.
[9] WANG H K E, LU W, WU Z G, et al. Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai[J]. Renewable energy, 2020, 145: 52-64.
[10] KUSAMA Y, ISHIDOYA Y.Thermal effects of a novel phase change material (PCM) plaster under different insulation and heating scenarios[J]. Energy and buildings, 2017, 141: 226-237.
[11] DEVAUX P, FARID M M.Benefits of PCM underfloor heating with PCM wallboards for space heating in winter[J]. Applied energy, 2017, 191: 593-602.
[12] 徐礼颉, 罗成龙, 季杰, 等. 双流道-中间隔热型太阳能相变蓄热墙体系统实验研究[J]. 太阳能学报, 2017, 38(5): 1227-1232.
XU L J, LUO C L, JI J, et al.Experimental research of a building-integrated double-channel and middle-positioned-insulation solar PCM wall[J]. Acta energiae solaris sinica, 2017, 38(5): 1227-1232.
[13] LI W, CHEN W.Numerical analysis on the thermal performance of a novel PCM-encapsulated porous heat storage Trombe-wall system[J]. Solar energy, 2019, 188: 706-719.
[14] LI S S, ZHU N, HU P F, et al.Numerical study on thermal performance of PCM Trombe wall[J]. Energy procedia, 2019, 158: 2441-2447.
[15] ZHU N, LI S S, HU P F, et al.Numerical investigations on performance of phase change material Trombe wall in building[J]. Energy, 2019, 187: 116057.
[16] CHEN C, LING H S, ZHAI Z Q, et al.Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses[J]. Applied energy, 2018, 216: 602-612.
[17] 孙李媛, 谢运生, 罗成龙, 等. 相变蓄热型光伏集热墙体系统的冬季实验研究[J]. 太阳能学报, 2020, 41(9): 265-270.
SUN L Y, XIE Y S, LUO C L, et al.Experimental study on photovoltaic Trombe wall system combined with phase change materials in winter[J]. Acta energiae solaris sinica, 2020, 41(9): 265-270.
[18] MENG E L, YU H, ZHOU B.Study of the thermal behavior of the composite phase change material (PCM) room in summer and winter[J]. Applied thermal engineering, 2017, 126: 212-225.
[19] BRENT A D, VOLLER V R, REID K J.Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal[J]. Numerical heat transfer, 1988, 13(3): 297-318.
[20] RÖSLER F, BRÜGGEMANN D. Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments[J]. Heat and mass transfer, 2011, 47(8): 1027-1033.
[21] SUN D, WANG L J.Research on heat transfer performance of passive solar collector-storage wall system with phase change materials[J]. Energy and buildings, 2016, 119: 183-188.
[22] ONG K S.A mathematical model of a solar chimney[J]. Renewable energy, 2003, 28(7): 1047-1060.
[23] GAU C, VISKANTA R.Melting and solidification of a pure metal on a vertical wall[J]. Journal of heat transfer, 1986, 108(1): 174-181.
[24] MORENO S, HINOJOSA J F, HERNÁNDEZ-LÓPEZ I, et al. Numerical and experimental study of heat transfer in a cubic cavity with a PCM in a vertical heated wall[J]. Applied thermal engineering, 2020, 178: 115647.
PDF(2745 KB)

Accesses

Citation

Detail

Sections
Recommended

/