WIND TURBINE ANOMALY DETECTION BASED ON DILATED CAUSAL CONVOLUTION NETWORK

Jiang Guoqian, Zhou Junchao, Wu Xin, Xu Xiangdong, He Qun, Xie Ping

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 368-375.

PDF(1799 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1799 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 368-375. DOI: 10.19912/j.0254-0096.tynxb.2021-1581

WIND TURBINE ANOMALY DETECTION BASED ON DILATED CAUSAL CONVOLUTION NETWORK

  • Jiang Guoqian1, Zhou Junchao1, Wu Xin2, Xu Xiangdong1, He Qun1, Xie Ping1
Author information +
History +

Abstract

Accurate and reliable anomaly detection is of great significance to ensure the safe and efficient operation of wind turbines. However, due to the complex structure and variable operation conditions of wind turbines, the measure SCADA data usually present complex nonlinear and strongly correlated and coupling characteristics. To better capture spatial correlations among different sensor variables, a new wind turbine anomaly detection approach based on dilated causal convolution network is proposed. Specifically, Focal Loss is introduced to improve the traditional loss function to address the data imbalance issue. The proposed approach can extract effective multiscale spatially correlated features with different receptive field sizes and effectively model the hidden spatial causality among different sensor variables. Furthermore, it can provide an end-to-end anomaly detection solution for wind turbines, which can directly learn useful spatial features from raw SCADA data and build the nonlinear mapping relationship between original data space and condition label space, thus finally outputting the corresponding detection results. A real case study with SCADA data from a wind farm is used to verify the feasibility and effectiveness of the proposed approach.

Key words

wind turbine / causal convolution / dilated convolution / imbalanced data / anomaly detection

Cite this article

Download Citations
Jiang Guoqian, Zhou Junchao, Wu Xin, Xu Xiangdong, He Qun, Xie Ping. WIND TURBINE ANOMALY DETECTION BASED ON DILATED CAUSAL CONVOLUTION NETWORK[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 368-375 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1581

References

[1] 龙霞飞, 杨苹, 郭红霞, 等. 大型风力发电机组故障诊断方法综述[J]. 电网技术, 2017, 41(11): 3480-3491.
LONG X F, YANG P, GUO H X, et al.Review of fault diagnosis methods for large wind turbines[J]. Power system technology, 2017, 41(11): 3480-3491.
[2] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189.
CHEN X F, GUO Y J, XU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. Journal of mechanical engineering, 2020, 31(2): 175-189.
[3] 杜勉, 易俊, 郭剑波, 等. 神经网络技术在风电机组SCADA数据分析中的应用研究[J]. 电网技术, 2018, 42(7): 2200-2205.
DU M, YI J, GUO J B, et al.Research on the application of neural networks on wind turbine SCADA data analysis[J]. Power system technology, 2018, 42(7): 2200-2205.
[4] 曾军, 陈艳峰, 杨苹, 等. 大型风力发电机组故障诊断综述[J]. 电网技术, 2018, 42(3): 849-860.
ZENG J, CHEN Y F, YANG P, et al.Review of fault diagnosis methods of large-scale wind turbines[J]. Power system technology, 2018, 42(3): 849-860.
[5] WANG Z Y, YAO L G, CAI Y W, et al.Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis[J]. Renewable energy, 2020, 155: 1312-1327.
[6] JIN X H, XU Z W, QIAO W.Condition monitoring of wind turbine generators using SCADA data analysis[J]. IEEE transactions on sustainable energy, 2021, 12(1): 202-210.
[7] 景彤梅, 齐咏生, 刘利强, 等. 基于KECA-GRNN的风电机组齿轮箱状态监测与健康评估[J]. 太阳能学报, 2021, 42(6): 400-408.
JING T M, QI Y S, LIU L Q, et al.Condition monitoring and health assessment of wind turbine gearbox based on KECA-GRNN[J]. Acta energiae solaris sinica, 2021, 42(6): 400-408.
[8] 金晓航, 许壮伟, 孙毅, 等. 基于SCADA数据分析和稀疏自编码神经网络的风电机组在线运行状态监测[J]. 太阳能学报, 2021, 42(6): 321-328.
JIN X H, XU Z W, SUN Y, et al.Online condition monitoring for wind turbines based on SCADA data analysis and sparse auto-encoder neural network[J]. Acta energiae solaris sinica, 2021, 42(6): 321-328.
[9] 颜永龙, 李剑, 李辉, 等. 采用信息熵和组合模型的风电机组异常检测方法[J]. 电网技术, 2015, 39(3): 737-743.
YAN Y L, LI J, LI H, et al.A wind turbine anomaly detection method based on information entropy and combination model[J]. Power system technology, 2015, 39(3): 737-743.
[10] 黄荣舟, 汤宝平, 杨燕妮, 等. 基于长短时记忆网络融合SCADA数据的风电齿轮箱状态监测[J]. 太阳能学报, 2021, 42(1): 235-239.
HUANG R Z, TANG B P, YANG Y N, et al.Condition monitoring of wind turbine gearbox based on LSTM neural network fusing SCADA data[J]. Acta energiae solaris sinica, 2021, 42(1): 235-239.
[11] JIANG G Q, XIE P, HE Q, et al.Wind turbine fault detection using a denoising autoencoder with temporal information[J]. IEEE/ASME transactions on mechatronics, 2018, 23(1): 89-100.
[12] KONG Z Q, TANG B P, DENG L, et al.Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units[J]. Renewable energy, 2020, 146: 760-768.
[13] PANG Y H, HE Q, JIANG G Q, et al.Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data[J]. Renewable energy, 2020, 161: 510-524.
[14] BAI S, KOLTER J Z, KOLTUN V.An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. https://arxiv.org/abs/1803.01271.
[15] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980-2988.
[16] LECUN Y, BENGIO Y, HINTON G.Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[17] 郝帅, 马瑞泽, 赵新生, 等. 基于卷积块注意模型的YOLOv3输电线路故障检测方法[J]. 电网技术, 2021, 45(8): 2979-2987.
HAO S, MA R Z, ZHAO X S, et al.Fault detection of YOLOv3 transmission line based on convolutional block attention model[J]. Power system technology, 2021, 45(8): 2979-2987.
[18] SHI Z, LIN H, LIU L, et al.Deep attention gated dilated temporal convolutional networks with intra-parallel convolutional modules for end-to-end monaural speech separation[C]//INTERSPEECH Conference, Graz, Austria, 2019: 3183-3187.
[19] HE Q, PANG Y H, JIANG G Q, et al.A spatio-temporal multiscale neural network approach for wind turbine fault diagnosis with imbalanced SCADA data[J]. IEEE transactions on industrial informatics, 2021, 17(10): 6875-6884.
[20] 高欣, 纪维佳, 赵兵, 等. 不平衡数据集下基于CVAE-CNN模型的智能电表故障多分类方法[J]. 电网技术, 2021, 45(8): 3052-3060.
GAO X, JI W J, ZHAO B, et al.Multi-classification method of smart meter fault types based on CVAE-CNN model under imbalanced dataset[J]. Power system technology, 2021, 45(8): 3052-3060.
[21] LEAHY K, HU R L, KONSTANTAKOPOULOS I C, et al.Diagnosing and predicting wind turbine faults from SCADA data using support vector machines[J]. International journal of prognostics and health management, 2018, 9(1): 1-11.
[22] HE H, GARCIA E A.Learning from imbalanced data[J]. IEEE transactions on knowledge and data engineering, 2009, 21(9): 1539-1548.
PDF(1799 KB)

Accesses

Citation

Detail

Sections
Recommended

/