LOW CARBON ECONOMIC SCHEDULING OF ELECTRICITY-GAS-HEAT INTEGRATED ENERGY SYSTEM BASED ON DEMAND-SIDE USER RESPONSE ANALYSIS

Li Hong, Lin Lanxin, Zhao Xiaojun

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 97-105.

PDF(1718 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1718 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 97-105. DOI: 10.19912/j.0254-0096.tynxb.2021-1585

LOW CARBON ECONOMIC SCHEDULING OF ELECTRICITY-GAS-HEAT INTEGRATED ENERGY SYSTEM BASED ON DEMAND-SIDE USER RESPONSE ANALYSIS

  • Li Hong, Lin Lanxin, Zhao Xiaojun
Author information +
History +

Abstract

In order to give full play to the interaction potential of both sides of supply and demand under the background of low-carbon economy,a bi-level low-carbon economy scheduling model of electricity-gas-heat integrated energy system(EGH-IES) considering integrated demand response(IDR) and carbon trading mechanism is proposed.Firstly,an IDR model considering the self-characteristics,coupling characteristics and load rebound effect of multi-energy loads and a comprehensive benefit model of weighing economic benefit,response mode and energy preference of users are proposed.Based on this,a bi-level optimal scheduling model is established. The upper model is the EGH-IES low-carbon economic optimal scheduling including the carbon trading mechanism based on rewards and punishments,and the lower model is IDR strategy. Then, the bi-level model is converted into a mixed integer linear programming problem by Karush-Kuhn-Tucker(KKT) condition, duality theorem and linearization method. Finally, the example analysis shows that considering carbon trading mechanism and multiple load characteristics can promote the joint optimization of supply and demand sides,and give full play to the low carbon economy of EGH-IES.

Key words

wind power / optimization / mathematical models / demand side management / electricity-gas-heat integrated energy system / carbon trading mechanism / load characteristics

Cite this article

Download Citations
Li Hong, Lin Lanxin, Zhao Xiaojun. LOW CARBON ECONOMIC SCHEDULING OF ELECTRICITY-GAS-HEAT INTEGRATED ENERGY SYSTEM BASED ON DEMAND-SIDE USER RESPONSE ANALYSIS[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 97-105 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1585

References

[1] 李更丰, 黄玉雄, 别朝红, 等. 综合能源系统运行可靠性评估综述及展望[J]. 电力自动化设备, 2019, 39(8): 12-21.
LI G F, HUANG Y X, BIE Z H, et al.Review and prospect of operational reliability evaluation of integrated energy system[J]. Electric power automation equipment, 2019, 39(8): 12-21.
[2] ZHU H X, YU T, CHEN Z, et al.Distributed optimal dispatching of interconnected electricity-gas-heating system[J]. IEEE access, 2020, 8: 93309-93321.
[3] 瞿凯平, 黄琳妮, 余涛, 等. 碳交易机制下多区域综合能源系统的分散调度[J]. 中国电机工程学报, 2018, 38(3): 697-707.
QU K P, HUANG L N, YU T, et al.Decentralized dispatch of multi-area integrated energy systems with carbon trading[J]. Proceedings of the CSEE, 2018, 38(3): 697-707.
[4] 崔杨, 曾鹏, 仲悟之, 等. 考虑阶梯式碳交易的电-气-热综合能源系统低碳经济调度[J]. 电力自动化设备, 2021, 41(3): 10-17.
CUI Y, ZENG P, ZHONG W Z, et al.Low-carbon economic dispatch of electricity-gas-heat integrated energy system based on ladder-type carbon trading[J]. Electric power automation equipment, 2021, 41(3): 10-17.
[5] ZHANG X H, LIU X Y, ZHONG J Q, et al.Electricity-gas-integrated energy planning based on reward and penalty ladder-type carbon trading cost[J]. IET generation, transmission & distribution, 2019, 13(23): 5263-5270.
[6] 朱伟业, 罗毅, 胡博, 等. 热负荷弹性与分时电价需求侧响应协同促进碳减排的电热优化调度[J]. 电网技术, 2021, 45(10): 3803-3813.
ZHU W Y, LUO Y, HU B, et al.Optimized combined heat and power dispatch considering decreasing carbon emission by coordination of heat load elasticity and time-of-use demand response[J]. Power system technology, 2021, 45(10): 3803-3813.
[7] GU H F, LI Y, JIE Y, et al.Bi-level optimal low-carbon economic dispatch for an industrial park with consideration of multi-energy price incentives[J]. Applied energy, 2020, 262: 114276.
[8] 张伊宁, 何宇斌, 晏鸣宇, 等. 计及需求响应与动态气潮流的电-气综合能源系统优化调度[J]. 电力系统自动化, 2018, 42(20): 1-8.
ZHANG Y N, HE Y B, YAN M Y, et al.Optimal dispatch of integrated electricity-natural gas system considering demand response and dynamic natural gas flow[J]. Automation of electric power system, 2018, 42(20): 1-8.
[9] 徐箭, 胡佳, 廖思阳, 等. 考虑网络动态特性与综合需求响应的综合能源系统协同优化[J]. 电力系统自动化, 2021, 45(12): 40-48.
XU J, HU J, LIAO S Y, et al.Coordinated optimization of integrated energy system considering network dynamic characteristics and integrated demand response[J]. Automation of electric power system, 2021, 45(12): 40-48.
[10] 吴勇, 吕林, 许立雄, 等. 考虑电/热/气耦合需求响应的多能微网多种储能容量综合优化配置[J]. 电力系统保护与控制, 2020, 48(16): 1-10.
WU Y, LYU L, XU L X, et al.Optimized allocation of various energy storage capacities in a multi-energy micro-grid considering electrical/thermal/gas coupling demand response[J]. Power system protection and control, 2020, 48(16): 1-10.
[11] JIANG Z Q, AI Q, HAO R.Integrated demand response mechanism for industrial energy system based on multi-energy interaction[J]. IEEE access, 2019, 7: 66336-66346.
[12] 赵海彭, 苗世洪, 李超, 等. 考虑冷热电需求耦合响应特性的园区综合能源系统优化运行策略研究[J]. 中国电机工程学报, 2022, 42(2): 573-589.
ZHAO H P, MIAO S H, LI C, et al.Research on optimal operation strategy for regional integrated energy system considering cold-heat-electric demand coupling response characteristics[J]. Proceedings of the CSEE, 2022, 42(2): 573-589.
[13] 李鹏, 吴迪凡, 李雨薇, 等. 基于综合需求响应和主从博弈的多微网综合能源系统优化调度策略[J]. 中国电机工程学报, 2021, 41(4): 1307-1321, 1538.
LI P, WU D F, LI Y W, et al.Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and stackelberg game[J]. Proceedings of the CSEE, 2021, 41(4): 1307-1321, 1538.
[14] 徐业琰, 廖清芬, 刘涤尘, 等. 基于综合需求响应和博弈的区域综合能源系统多主体日内联合优化调度[J]. 电网技术, 2019, 43(7): 2506-2518.
XU Y Y, LIAO Q F, LIU D C, et al.Multi-player intraday optimal dispatch of integrated energy system based on integrated demand response and games[J]. Power system technology, 2019, 43(7): 2506-2518.
[15] 胡鹏, 艾欣, 张朔, 等. 基于需求响应的分时电价主从博弈建模与仿真研究[J]. 电网技术, 2020, 44(2): 585-592.
HU P, AI X, ZHANG S, et al.Modelling and simulation study of tou stackelberg game based on demand response[J]. Power system technology, 2020, 44(2): 585-592.
[16] 肖勇, 王岩, 钱斌, 等. 考虑发用电协调的售电公司负荷组合优化建模方法[J]. 电力系统自动化, 2020, 44(20): 148-156.
XIAO Y, WANG Y, QIAN B, et al.Modeling method of load combination optimization for electricity retailer considering coordination of power generation and consumption[J]. Automation of electric power system, 2020, 44(20): 148-156.
[17] 张晓辉, 闫柯柯, 卢志刚, 等. 基于碳交易的含风电系统低碳经济调度[J]. 电网技术, 2013, 37(10): 2697-2704.
ZHANG X H, YAN K K, LU Z G, et al.Carbon trading based low-carbon economic dispatching for power grid integrated with wind power system[J]. Power system technology, 2013, 37(10): 2697-2704.
[18] 董帅, 王成福, 梁军, 等. 计及电转气运行成本的综合能源系统多目标日前优化调度[J]. 电力系统自动化, 2018, 42(11): 8-15,121.
DONG S, WANG C F, LIANG J, et al.Multi-objective optimal day-ahead dispatch of integrated energy system considering power to gas operation cost[J]. Automation of electric power system, 2018, 42(11): 8-15,121.
[19] 陈胜, 卫志农, 孙国强, 等. 电-气混联综合能源系统概率能量流分析[J]. 中国电机工程学报, 2015, 35(24): 6331-6340.
CHEN S, WEI Z N, SUN G Q, et al.Probabilistic energy flow analysis in integrated electricity and natural-gas energy systems[J]. Proceedings of the CSEE, 2015, 35(24): 6331-6340.
[20] 葛晓琳, 王云鹏, 朱肖和, 等. 计及差异化能量惯性的电-热-气综合能源系统日前优化调度[J]. 电网技术, 2021, 45(12): 4630-4642.
GE X L, WANG Y P, ZHU X H, et al.Day-ahead optimal scheduling method for integrated power, heat and gas energy system considering differentiation energy inertia[J]. Power system technology, 2021, 45(12): 4630-4642.
PDF(1718 KB)

Accesses

Citation

Detail

Sections
Recommended

/