RESEARCH ON nc-Si:H/nc-SiOx:H STACKED THIN FILMS AS SILICON HETEROJUNCTION SOLAR CELL WINDOW LAYER

Yang Yuhao, Liu Wenzhu, Zhang Liping, Meng Fanying, Gao Yanfeng, Liu Zhengxin

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (8) : 203-207.

PDF(1995 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1995 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (8) : 203-207. DOI: 10.19912/j.0254-0096.tynxb.2021-1600

RESEARCH ON nc-Si:H/nc-SiOx:H STACKED THIN FILMS AS SILICON HETEROJUNCTION SOLAR CELL WINDOW LAYER

  • Yang Yuhao1,2, Liu Wenzhu2, Zhang Liping2, Meng Fanying2, Gao Yanfeng1, Liu Zhengxin2
Author information +
History +

Abstract

In this work, the highly conductive, highly transparent phosphorus-doped hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) film is prepared, which is successfully applied as the window layer of silicon heterojunction (SHJ) cells to replace the traditional hydrogenated amorphous silicon (a-Si:H) film. Compared with the cell with a-Si:H thin film as the window layer, the short-circuit current density can be increased by 0.5 mA/cm2 to 38.5 mA/cm2, the fill factor is 82.7%, and the efficiency is 23.5%. In addition, the intrinsic amorphous silicon layer was surface treated before nc-SiOx:H film deposition. The deposition of 1 nm nanocrystalline silicon seed layer can improve the crystallinity of nc-SiOx:H film and reduce the content of amorphous phase in the film. Compared with the fill factor of the cell with nc-SiOx:H film, the fill factor of the cell with nc-Si:H/ nc-SiOx:H stacked thin films is increased to 83.4%, and the efficiency increased by 0.3% to 23.8%.

Key words

nanocrystalline materials / solar cells / film growth / silicon heterojunction solar cells / hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) / interface treatment

Cite this article

Download Citations
Yang Yuhao, Liu Wenzhu, Zhang Liping, Meng Fanying, Gao Yanfeng, Liu Zhengxin. RESEARCH ON nc-Si:H/nc-SiOx:H STACKED THIN FILMS AS SILICON HETEROJUNCTION SOLAR CELL WINDOW LAYER[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 203-207 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1600

References

[1] TAGUCHI M.Review: development history of high efficiency silicon heterojunction solar cell: from discovery to practical use[J]. ECS journal of solid state science and technology, 2021, 10(2): 025002.
[2] 姚宇波, 张丽平, 刘文柱, 等. 不同背反射结构在硅异质结太阳电池中的应用研究[J]. 太阳能学报, 2022, 43(10): 37-42.
YAO Y B, ZHANG L P, LIU W Z, et al.Research on application of different back reflection structures in silicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2022, 43(10): 37-42.
[3] LIN H, YANG M, RU X N, et al.Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers[J]. Nature energy, 2023: 1-11.
[4] RICHTER A, HERMLE M, GLUNZ S W, Reassessment of the limiting efficiency for crystalline silicon solar cells[J]. IEEE journal of photovoltaics, 2013, 3(4): 1184-1191.
[5] UMISHIO H, SAI H, KOIDA T, et al.Nanocrystalline-silicon hole contact layers enabling efficiency improvement of silicon heterojunction solar cells: impact of nanostructure evolution on solar cell performance[J]. Progress in photovoltaics: research and applications, 2021, 29(3): 344-356.
[6] GABRIEL O, KIRNER S, KLINGSPORN M, et al.On the plasma chemistry during plasma enhanced chemical vapor deposition of microcrystalline silicon oxides[J]. Plasma processes and polymers, 2015, 12(1): 82-91.
[7] ZHAO Y F, MAZZARELLA L, PROCEL P, et al.Doped hydrogenated nanocrystalline silicon oxide layers for high-efficiency c-Si heterojunction solar cells[J]. Progress in photovoltaics: research and applications, 2020, 28(5): 425-435.
[8] ZHOU J H, IKUTA K, YASUDA T, et al.Growth of amorphous-layer-free microcrystalline silicon on insulating glass substrates by plasma-enhanced chemical vapor deposition[J]. Applied physics letters, 1997, 71(11): 1534-1536.
[9] MAZZARELLA L, KIRNER S, GABRIEL O, et al.Nanocrystalline silicon emitter optimization for Si-HJ solar cells: substrate selectivity and CO2 plasma treatment effect[J]. Physica status solidi (a), 2017, 214(2): 1532958.
[10] YAN L L, HUANG S L, REN H Z, et al.Bifunctional CO2 plasma treatment at the i/p interface enhancing the performance of planar silicon heterojunction solar cells[J]. Physica status solidi (RRL)-rapid research letters, 2021, 15(12): 2100010.
[11] MORRAL A F, CABARROCAS P R, CLERC C.Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements[J]. Physical review B, 2004, 69(12): 125307.
[12] REEVES G K, HARRISON H B.Obtaining the specific contact resistance from transmission line model measurements[J]. IEEE electron device letters, 1982, 3(5): 111-113.
[13] WERNER K.Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology[J]. RCA review, 1970, 31: 187-205.
[14] LIU W Z, ZHANG L P, YANG X B, et al.Damp-heat-stable, high-efficiency, industrial-size silicon heterojunction solar cells[J]. Joule, 2020, 4(4): 913-927.
[15] HUANG S L, LIU W Z, LI X D, et al.Prolonged annealing improves hole transport of silicon heterojunction solar cells[J]. Physica status solidi(RRL)-rapid research letters, 2021, 15(12): 2100015.
[16] LUCOVSKY G, YANG J, CHAO S S, et al.Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films[J]. Physical review B, 1983, 28(6): 3225-3233.
[17] SHARMA M, PANIGRAHI J, KOMARALA V K.Nanocrystalline silicon thin film growth and application for silicon heterojunction solar cells: a short review[J]. Nanoscale advances, 2021, 3(12): 3373-3383.
[18] WEN C, XU H, HE W, et al.Tuning oxygen impurities and microstructure of nanocrystalline silicon photovoltaic materials through hydrogen dilution[J]. Nanoscale research letters, 2014, 9(1): 1-9.
[19] IQBAL Z, VEPŘEK S, WEBB A P, et al. Raman scattering from small particle size polycrystalline silicon[J]. Solid state communications, 1981, 37(12): 993-996.
PDF(1995 KB)

Accesses

Citation

Detail

Sections
Recommended

/