SOLAR RADIATION TRANSMISSION MODEL OF GLASS LAYER WITH ATTACHED DROPLETS

Wang Yanjin, Xiong Jintao, Yang Weibin, He Fangyi, Wang Qian, Lyu Zhihai

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 179-185.

PDF(2523 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2523 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (12) : 179-185. DOI: 10.19912/j.0254-0096.tynxb.2021-1603

SOLAR RADIATION TRANSMISSION MODEL OF GLASS LAYER WITH ATTACHED DROPLETS

  • Wang Yanjin, Xiong Jintao, Yang Weibin, He Fangyi, Wang Qian, Lyu Zhihai
Author information +
History +

Abstract

A solar radiation transmission model with droplets attached to the glass layer is proposed based on characteristics of solar radiation transmission between droplets and the glass layer. The incident solar radiation is splitted into the direct radiation and the diffuse radiation parts, and the Monte Carlo ray tracing method is used to calculate the transmittance, reflectance and absorptance of the glass layer with attached droplets. At the same time, the incident angle is divided into sub-angles, and the Monte Carlo ray tracing method is used to calculate the optical performance of the diffuse radiation in each sub-angle. In order to verify the proposed model, the effect of the droplet coverage and the solar incident angle on the optical performance of the glass layer with attached droplets was tested experimentally, and the measured results and the calculated results are compared. The results show that the difference between the experimental results and the calculated results is small. The maximum error of the total transmittance is only about 0.05, and the model has high accuracy. The droplets attached to the glass layer can effectively reduce the solar radiation transmittance, which decreases with the increase of the droplet coverage and the incident angle.

Key words

glass / droplet / solar radiation / Monte Carlo method / building energy consumption

Cite this article

Download Citations
Wang Yanjin, Xiong Jintao, Yang Weibin, He Fangyi, Wang Qian, Lyu Zhihai. SOLAR RADIATION TRANSMISSION MODEL OF GLASS LAYER WITH ATTACHED DROPLETS[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 179-185 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1603

References

[1] DOMINGUEZ-TORRES C A, LEON-RODRIGUEZ A L, SUAREZ R, et al. Numerical and experimental validation of the solar radiation transfer for an egg-crate shading device under Mediterranean climate conditions[J]. Solar energy, 2019, 183: 755-767
[2] 洪铭, 冯朝卿, 郑宏飞, 等. 用于玻璃幕墙的透射式太阳能聚光系统研究[J]. 太阳能学报, 2020, 41(1): 13-19.
HONG M, FENG C Q, ZHENG H F, et al.Study of transmissive solar concentrating system for glass curtain wall[J]. Acta energiae solaris sinica, 2020, 41(1): 13-19.
[3] ZHANG C X, SHI X H, LI T J, et al.Determining the effects of droplets attached to glass on light transmission by using Monte Carlo ray tracing method in target optical detection[J]. Journal of quantitative spectroscopy & radiative transfer, 2020, 245: 106856.
[4] ZHANG C X, LI T J, YUAN Y, et al.Effects of droplets in the air on light transmission in target optical detection[J]. Optics and lasers in engineering, 2020, 128: 106044.
[5] ZHU K Y, LI S L, PILON L.Light transfer through windows with external condensation[J]. Journal of quantitative spectroscopy & radiative transfer, 2018, 208: 164-171.
[6] ZHU K Y, PILON L.Transmittance of transparent windows with non-absorbing cap-shaped droplets condensed on their backside[J]. Journal of quantitative spectroscopy & radiative transfer, 2017, 194 : 98-107.
[7] ZHU K Y, PILON L.Transmittance of semitransparent windows with absorbing cap-shaped droplets condensed on their backside[J]. Journal of quantitative spectroscopy & radiative transfer, 2017, 201 : 53-63.
[8] LIN Q Q, XUAN Y M, HAN Y G.The effect of randomly-distributed droplets on thermal radiation of surfaces[J]. International journal of heat and mass transfer, 2016, 96 : 231-241.
[9] LI Q, ZHU X Y, XUAN Y M.Modeling heat generation in high power density nanometer scale GaAs/InGaAs/AlGaAs PHEMT[J]. International journal of heat and mass transfer, 2015, 81 : 130-136.
[10] TZOUMANIKAS P, NIKITIDOU E, BAIS A F, et al.The effect of clouds on surface solar irradiance, based on data from an all-sky imaging system[J]. Renewable energy, 2016, 95: 314-322.
[11] RANGANATHAN R, MIKHAEL W, KUTKUT N, et al.Adaptive sun tracking algorithm for incident energy maximization and efficiency improvement of PV panels[J]. Renewable energy, 2011, 36(10): 2623-2626.
[12] LIU F S, KANG N, LI Y K, et al.Experimental investigation on the spray characteristics of a droplet under sinusoidal inertial force[J]. Fuel, 2018, 226: 156-162.
[13] HUANG Y H, JIANG L K, LI B W, et al.Study effects of particle size in metal nanoink for electrohydrodynamic inkjet printing through analysis of droplet impact behaviors[J]. Journal of manufacturing processes, 2020, 56: 1270-1276.
[14] ZHANG X Q, QIN Y Z.Contact angle hysteresis of a water droplet on a hydrophobic fuel cell surface[J]. Journal of colloid and interface science, 2019, 545 : 231-241.
[15] 董佰扬, 单彦广, 翁志浩. 基于动态接触角的固着液滴蒸发过程模拟[J]. 动力工程学报, 2020, 40(12): 59-64.
DONG B Y, SHAN Y G, WENG Z H.Simulation of sessile droplet evaporation based on dynamic contact angle[J]. Chinese journal of power engineering, 2020, 40(12): 59-64.
[16] YU Y L, ZHU H P, FRANTZ J M, et al.Evaporation and coverage area of pesticide droplets on hairy and waxy leaves[J]. Biosystems engineering, 2009, 104(3): 324-334.
[17] SIDAWI K, MOROZ P, CHANDRA S.On surface area coverage by an electrostatic rotating bell atomizer[J]. Journal of coatings technology and research, 2021, 18(3): 649-663.
[18] LIU B, YUAN Y, LI S, et al.Simulation of light-field camera imaging based on ray splitting Monte Carlo method[J]. Optics communications, 2015, 355: 15-26.
[19] 戴贵龙, 夏雨婷, 谢林毅, 等. 半透明玻璃管束吸热芯聚集太阳光传输特性分析[J]. 太阳能学报, 2020, 41(7): 222-226.
DAI G L, XIA Y T, XIE L Y, et al.Transferring performances of concentrated sunlight inside quartz glass pipe bundle absorber[J]. Acta energiae solaris sinica, 2020, 41(7): 222-226.
[20] HALE G M, QUERRY M R.Optical Constants of water in the 200-nm to 200-um wavelength region[J]. Applied optics, 1973, 12(3): 555-563.
[21] RUBIN M.Optical properties of soda lime silica glasses[J]. Solar energy materials, 1985, 12(4): 275-288.
[22] 扶祺高, 陈友明, 王衍金, 等. 遮阳百叶散射-散射积分模型[J]. 太阳能学报, 2017, 38(10): 2770-2777.
FU Q G, CHEN Y M, WANG Y J, et al.Diffuse-diffuse integral model for shade blinds[J]. Acta energiae solaris sinica, 2017, 38(10): 2770-2777.
PDF(2523 KB)

Accesses

Citation

Detail

Sections
Recommended

/