MODEL FREE ADAPTIVE CONTROL FOR FLOATING OFFSHORE WIND TURBINES

Qi Liangwen, Shi Kezhong, Guo Naizhi, Li Bo, Zhang Ziliang, Xu Jianzhong

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 384-390.

PDF(4322 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4322 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 384-390. DOI: 10.19912/j.0254-0096.tynxb.2021-1617

MODEL FREE ADAPTIVE CONTROL FOR FLOATING OFFSHORE WIND TURBINES

  • Qi Liangwen1-3, Shi Kezhong1-3, Guo Naizhi1-3, Li Bo1-3, Zhang Ziliang4, Xu Jianzhong1-3
Author information +
History +

Abstract

Oriented towards the coupling of blade loads, power and floating platform motions in floating wind turbine systems, a model free adaptive control based on trailing edge flap is presented. In this approach, blade root flap-wise bending moments, generator power, platform-pitch and -yaw motions are selected as the control output. Meanwhile, output signals were filtered by specific frequencies to decouple the model free adaptive control from the baseline control. The proposed control was numerically tested in the modified FAST aero-servo-elastic code equipped with trailing-edge-flap interfaces. Numerical results show considerable fatigue load reductions on blades and floating platforms without sacrificing power fluctuation. Further, the in-phase aero-elastic coupling relationships in FOWT systems are impaired by introducing the servo-dynamics of trailing edge flaps, further reducing the energy exerted on wind rotor from inflow wind.

Key words

offshore wind power / wind turbine / platform motion / load reduction / trailing edge flap / model free adaptive control

Cite this article

Download Citations
Qi Liangwen, Shi Kezhong, Guo Naizhi, Li Bo, Zhang Ziliang, Xu Jianzhong. MODEL FREE ADAPTIVE CONTROL FOR FLOATING OFFSHORE WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 384-390 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1617

References

[1] IEA. World energy outlook 2020[M]. Paris: International Energy Agency, 2020: 213-250.
[2] LEE H, LEE D J.Effects of platform motions on aerodynamic performance and unsteady wake evolution of a floating offshore wind turbine[J]. Renewable energy, 2019, 143: 9-23.
[3] HØEG C E, ZHANG Z L. The influence of gyroscopic effects on dynamic responses of floating offshore wind turbines in idling and operational conditions[J]. Ocean engineering, 2021, 227: 108712.
[4] JONKMAN J M.Influence of control on the pitch damping of a floating wind turbine[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 2008.
[5] YANG J J, HE E M.Coupled modeling and structural vibration control for floating offshore wind turbine[J]. Renewable energy, 2020, 157: 678-694.
[6] FLEMING P A, PEIFFER A, SCHLIPF D.Wind turbine controller to mitigate structural loads on a floating wind turbine platform[J]. Journal of offshore mechanics and arctic engineering, 2019, 141(6): 06191.
[7] BETTI G, FARINA M, GUAGLIARDI G A, et al.Development of a control-oriented model of floating wind turbines[J]. IEEE transactions on control systems technology, 2014, 22(1): 69-82.
[8] WAKUI T, NAGAMURA A, YOKOYAMA R.Stabilization of power output and platform motion of a floating offshore wind turbine generator system using model predictive control based on previewed disturbances[J]. Renewable energy, 2021, 173: 105-127.
[9] SARKAR S, FITZGERALD B, BASU B.Individual blade pitch control of floating offshore wind turbines for load mitigation and power regulation[J]. IEEE transactions on control system technology, 2021, 29(1): 305-315.
[10] TONG X, ZHAO X W.Vibration and power regulation control of a floating wind turbine with hydrostatic transmission[J]. Renewable energy, 2021, 167: 899-906.
[11] BOSSANYI E A.Individual blade pitch control for load reduction[J]. Wind energy, 2003, 6: 119-128.
[12] ANDERSEN P B, GAUNAA M, BAK C, et al.Deformable trailing edge flaps for modern megawatt wind turbine controller using strain guage sensors[J]. Wind energy, 2010, 13: 193-206.
[13] LACKNER M A, VAN KUIK G.A comparison of smart rotor control approaches using trailing edge flaps and individual pitch control[J]. Wind energy, 2010, 13(2): 117-134.
[14] WILSON D G, BERG D E, BARONE M F, et al.Active aerodynamic blade control design for load reduction on large wind turbines[C]//European Wind Energy Conference & Exhibition, Marseille, France, 2009.
[15] 张明明. 大型海上风电叶片载荷智能控制研究[J]. 工程热物理学报, 2017, 38(7): 1363-1375.
ZHANG M M.Smart control of fatigue load on a large-scale offshore wind turbine blade[J]. Journal of engineering thermophysics, 2017, 38(7): 1363-1375.
[16] 张文广, 王奕枫, 刘瑞杰. 风力机智能叶片非定常气动特性分析[J]. 太阳能学报, 2019, 40(4): 1171-1178.
ZHANG W G, WANG Y F, LIU R J.Analysis of unsteady aerodynamic performance on wind turbine smart blade[J]. Acta energiae solaris sinica, 2019, 40(4): 1171-1178.
[17] JONKMAN J M.Dynamics modeling and loads analysis of an offshore floating wind turbine[R]. NREL/TP-500-41958, 2007.
[18] ROBERSTON A, JONKMAN J M, MASCIOLA M, et al.Definition of the semisubmersible floating system for phase II of OC4[R]. NREL/TP-5000-60601, 2014.
[19] HOU Z S, XIONG S S.On model-free adaptive control and its stability analysis[J]. IEEE transactions on automatic control, 2019, 64: 4555-4569.
[20] 尤兴华, 马圣容. 李亚普诺夫方程AX+XB=C的简洁解及其应用[J]. 南京师大学报(自然科学版), 2011, 34(3): 44-49.
YOU X H, MA S R.The simple formulae of solutions to Liapunov matrix equation AX+XB=C and its application[J]. Journal of Nanjing Normal University(natural science edition), 2011, 34(3): 44-49.
[21] IEC 61400-3-1:2019, Wind energy generation systems-Part 3-1: Design requirements for fixed offshore wind turbines (Edition 1.0)[S].
[22] GRINSTED A, MOORE J C, JEVREJEVA S.Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear processes in geophysics, 2004, 11: 561-566.
PDF(4322 KB)

Accesses

Citation

Detail

Sections
Recommended

/