MODELING AND ANALYSIS OF ABSORPTION AND SCATTERING PROPERTIES OF Ag NANOPARTICLES IN QUANTUM SCALE

Yu Xiaochen, Li Jiayu, Yang Zhenyu

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 239-245.

PDF(2088 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2088 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 239-245. DOI: 10.19912/j.0254-0096.tynxb.2022-0003

MODELING AND ANALYSIS OF ABSORPTION AND SCATTERING PROPERTIES OF Ag NANOPARTICLES IN QUANTUM SCALE

  • Yu Xiaochen, Li Jiayu, Yang Zhenyu
Author information +
History +

Abstract

In this paper, the research objects are the spherical and rod-shaped Ag nanoparticles at quantum scale. Their absorption and scattering properties are modelled and analyzed by numerical simulation. The results show that, compared with the calculated results of classical model, the absorption peak positions of the modified electromagnetic model have moved significantly, and the values of the peaks have been significantly reduced. The absorption peak of the rod-shaped Ag nanoparticles can be effectively optimized to the visible light band and a higher absorption factor value.

Key words

electromagnetic theory / nanoparticles / plasmonics / absorption efficiency / modified electromagnetic model / absorption spectroscopy

Cite this article

Download Citations
Yu Xiaochen, Li Jiayu, Yang Zhenyu. MODELING AND ANALYSIS OF ABSORPTION AND SCATTERING PROPERTIES OF Ag NANOPARTICLES IN QUANTUM SCALE[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 239-245 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0003

References

[1] SUN M T, XU H X.A novel application of plasmonics: plasmon-driven surface-catalyzed reactions[J]. Small, 2012, 8(18): 2777-2786.
[2] MAYER K M, HAFNER J H.Localized surface plasmon resonance sensors[J]. Chemical reviews, 2011, 111(6): 3828-3857.
[3] HIRSCH L R, STAFFORD R J, BANKSON J A, et al.Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23): 13549-13554.
[4] CAI B Y, JIA B H, SHI Z R, et al.Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells[J]. Applied physics letters, 2013, 102(9): 093107.
[5] LU L Y, LUO Z Q, XU T, et al.Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells[J]. Nano letters, 2013, 13(1): 59-64.
[6] DING S Y, YI J, LI J F, et al.Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature reviews materials, 2016, 1(6): 1-16.
[7] 邵磊山, 李静静, 陈仕兵, 等. 石墨烯/纳米银抗菌剂在聚丙烯中的应用[J]. 高分子材料科学与工程, 2020, 36(11): 134-138.
SHAO L S, LI J J, CHEN S B, et al.Application of graphene/silver nanoparticle as antibacterial agent to polypropylene[J]. Polymer materials science & engineering, 2020, 36(11): 134-138.
[8] PILLAI S, CATCHPOLE K R, TRUPKE T, et al.Surface plasmon enhanced silicon solar cells[J]. Journal of applied physics, 2007, 101(9): 093105.
[9] 张宇杰, 杨仕娥, 陈永生, 等. 金属纳米颗粒光散射特性研究[J]. 太阳能学报, 2017, 38(3): 721-725.
ZHANG Y J, YANG S E, CHEN Y S, et al.The study of the metal nanoparticle light scattering[J]. Acta energiae solaris sinica, 2017, 38(3): 721-725.
[10] 牟登科, 周欢森, 钟建军, 等. 彩色纳米银抗菌剂的制备及抗菌性能研究[J]. 化工新型材料, 2020, 48(7): 93-95, 99.
MOU D K, ZHOU H S, ZHONG J J, et al.Preparation and property of colorful nano-silver antibacterial agent[J]. New chemical materials, 2020, 48(7): 93-95, 99.
[11] 袁洋, 顾佳俊. 金属纳米颗粒的表面等离子体共振及其调控[J]. 冶金与材料, 2020, 40(5): 92-93, 95.
YUAN Y, GU J J.Surface plasmon resonance of metal nanoparticles and its control[J]. Metallurgy and materials, 2020, 40(5): 92-93, 95.
[12] 洪文鹏, 兰景瑞, 李浩然, 等. 基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为[J]. 物理学报, 2021, 70(20): 327-340.
HONG W P, LAN J R, LI H R, et al.Reversal behavior of optical absorption rate of bimetallic core-shell nanoparticles based on finite-difference time-domain method[J]. Acta physica sinica, 2021, 70(20): 327-340.
[13] MCMAHON J M, GRAY S K, SCHATZ G C.Nonlocal optical response of metal nanostructures with arbitrary shape[J]. Physical review letters, 2009, 103(9): 097403.
[14] GONALVES P A D, CHRISTENSEN T, RIVERA N, et al. Plasmon-emitter interactions at the nanoscale[J]. Nature communications, 2020, 11(1): 366.
[15] YI Y, DI Z, WEI Y, et al.A general theoretical and experimental framework for nanoscale electromagnetism[J]. Nature, 2019, 576(7786): 248-252.
[16] FEIBELMAN P J.Surface electromagnetic fields[J]. Progress in surface science, 1982, 12(4): 287-407.
[17] CHRISTENSEN T, YAN W, JAUHO A P, et al.Quantum corrections in nanoplasmonics: shape, scale, and material[J]. Physical review letters, 2017, 118(15): 157402.
[18] JOHNSON P B, CHRISTY R W.Optical constants of the noble metals[J]. Physical review B, 1972, 6(12): 4370-4379.
[19] SCHOLL J A, KOH A L, DIONNE J A.Quantum plasmon resonances of individual metallic nanoparticles[J]. Nature, 2012, 483(7390): 421-427.
PDF(2088 KB)

Accesses

Citation

Detail

Sections
Recommended

/