EXPERIMENTAL STUDY OF THERMO-ACTIVATED ACTIVE INSULATION WALL BASED ON FLAT-PLATE HEAT PIPE ARRAY

Yang Yang, Chen Sarula, Chang Tianxin, Xuan Xiaodong, Pan Chao, Guo Anni

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 257-264.

PDF(2937 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2937 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (5) : 257-264. DOI: 10.19912/j.0254-0096.tynxb.2022-0007

EXPERIMENTAL STUDY OF THERMO-ACTIVATED ACTIVE INSULATION WALL BASED ON FLAT-PLATE HEAT PIPE ARRAY

  • Yang Yang1, Chen Sarula2, Chang Tianxin2, Xuan Xiaodong1, Pan Chao2, Guo Anni2
Author information +
History +

Abstract

Aiming at the passive transmission and innovative utilization of low-grade heat sources such as solar thermal energy, a novel thermo-activated active insulation wall based on the flat-plate heat pipe array (FPHP) is proposed. The effects of inclination and heat source temperature on the energy transmission performance of FPHP are tested, and the thermal performance of the thermos-activated active insulation wall and ordinary energy-saving wall are compared. The results show that the measured effective thermal conductivity of the FPHP ranges from 4400 to 35400 W/(m·℃) after the low-temperature simulated heat source is applied to the evaporation section. Therefore, the FPHP inclination can be reduced to improve the effective thermal conductivity when it is applied to the active insulation scenario, while the FPHP inclination can be increased when it is applied to the auxiliary energy supply or direct energy supply scenario to achieve similar purposes. Besides, the injection of low-temperature heat sources such as solar thermal energy can significantly improve the thermal performance of the thermo-activated active insulation wall. When the injected heat source temperature is 25 ℃ and 35 ℃, the measured U value can be reduced from 0.50 W/(m2·℃) to 0.19 and -0.08 W/(m2·℃), respectively.

Key words

solar energy / building energy saving / heat pipes / active insulation / experiments

Cite this article

Download Citations
Yang Yang, Chen Sarula, Chang Tianxin, Xuan Xiaodong, Pan Chao, Guo Anni. EXPERIMENTAL STUDY OF THERMO-ACTIVATED ACTIVE INSULATION WALL BASED ON FLAT-PLATE HEAT PIPE ARRAY[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 257-264 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0007

References

[1] 余才锐, 沈冬梅, 何伟, 等. 基于辐射制冷和微槽道热管的相变墙体实验研究[J]. 太阳能学报, 2020, 41(4): 123-128.
YU C R, SHEN D M, HE W, et al.Experimental research on phase change wall based on sky radiative cooling and micro-channel heat pipe[J]. Acta energiae solaris sinica, 2020, 41(4): 123-128.
[2] 胡中停, 余鹏坤, 陈明想, 等. 基于微通道板强化换热的多功能百叶集热墙模块实验研究[J]. 太阳能学报, 2022, 43(2): 246-249.
HU Z T, YU P K, CHEN M X, et al.Experiment analysis of multi-functional trombe wall modul based on enhanced heat transfer micro-channel plate[J]. Acta energiae solaris sinica, 2022, 43(2):246-249.
[3] YANG Y, CHEN S R L, CHANG T X, et al. Uncertainty and global sensitivity analysis on thermal performances of pipe-embedded building envelope in the heating season[J]. Energy conversion and management, 2021, 244: 114509.
[4] 李先庭, 沈翀, 王宝龙, 等. 降低空调系统能耗的显热负荷分级构想[J]. 建筑技术开发, 2016, 43(10): 16-20.
LI X T, SHEN C, WANG B L, et al.Conception of sensible load grading to reduce energy consumption of air-conditioning system[J]. Building technology development, 2016, 43(10): 16-20.
[5] 朱丽, 杨洋, 陈萨如拉, 等. 热激活相变复合墙体动态热特性与节能潜力[J]. 重庆大学学报, 2018, 41(11): 42-52.
ZHU L, YANG Y, CHEN S R L, et al. Thermal performance and energy saving potential study on a thermo-activated PCM building system[J]. Journal of Chongqing University, 2018, 41(11): 42-52.
[6] KRZACZEK M, FLORCZUK J, TEJCHMAN J, et al.Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings[J]. Applied energy, 2019, 254: 113711.
[7] 朱丽, 杨洋. 被动式热激活复合墙体热特性实验研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(10): 1028-1035.
ZHU L, YANG Y.Experimental study of the thermal characteristics of a passive thermo-activated composite wall[J]. Journal of Tianjin University(science and technology), 2020, 53(10): 1028-1035.
[8] YAN T, XU X H, GAO J J, et al.Performance evaluation of a PCM-embedded wall integrated with a nocturnal sky radiator[J]. Energy, 2020, 210: 118412.
[9] SIMKO M, KRAJCIK M, SIKULA O, et al.Insulation panels for active control of heat transfer in walls operated as space heating or as a thermal barrier: numerical simulations and experiments[J]. Energy and buildings, 2018, 158: 135-146.
[10] KLINE S J, MCCLINTOCK F A.Describing uncertainties in single-sample experiments[J]. Mechanical engineering, 1953, 75: 3-8.
PDF(2937 KB)

Accesses

Citation

Detail

Sections
Recommended

/