BATTERY CONSISTENCY DIAGNOSIS BASED ON EVIDENTIAL KNN CLASSIFIER

Wang Nan, Zhou Xichao, Peng Yong, Li Zhen, An Kun, Zhao Pengxiang

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 13-19.

PDF(1748 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1748 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (4) : 13-19. DOI: 10.19912/j.0254-0096.tynxb.2022-0023
Topics on Key Technologies for Safety of Electrochemical Energy Storage Systems and Echelon Utilization of Decommissioned Power Batteries

BATTERY CONSISTENCY DIAGNOSIS BASED ON EVIDENTIAL KNN CLASSIFIER

  • Wang Nan, Zhou Xichao, Peng Yong, Li Zhen, An Kun, Zhao Pengxiang
Author information +
History +

Abstract

The inconsistency of battery unit inevitably occurs in the long-term operation of the large-capacity energy storage stations composed by series-parallel connection. Therefore, timely identification of battery units with potential abnormalities can not only provide data support for energy storage stations to assess the health status of batteries, but also reduce the systemic operation risks. In this paper, we proposes a consistency diagnosis method for energy storage batteries based on evidential KNN classifier, which is independent of battery model and empirical data. Concretely, this method is based on a large number of single unit voltage and temperature operation data in a cluster of units in an energy storage stations, and uses an evidential KNN classifier to construct a diagnostic model that can characterize the consistency of unit voltage and temperature, and accurately identifies abnormal single units through an anomaly inversion algorithm.

Key words

energy storage battery / consistency diagnosis / evidential KNN classifier / anomaly inversion algorithm

Cite this article

Download Citations
Wang Nan, Zhou Xichao, Peng Yong, Li Zhen, An Kun, Zhao Pengxiang. BATTERY CONSISTENCY DIAGNOSIS BASED ON EVIDENTIAL KNN CLASSIFIER[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 13-19 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0023

References

[1] 李欣然, 黎淑娟, 黄际元, 等. 储能电池参与电网二次调频的高效性评估[J]. 太阳能学报, 2019, 40(9): 2608-2615.
LI X R, LI S J, HUANG J Y, et al. Efficiency analysis of energy storage battery participating in secondary frequency regulation[J]. Acta energiae solaris sinica, 2019, 40(9): 2608-2615.
[2] 戴海峰, 王楠, 魏学哲, 等. 车用动力锂离子电池单体不一致性问题研究综述[J]. 汽车工程, 2014, 36(2): 181-188, 203.
DAI H F, WANG N, WEI X Z, et al. A research review on the cell inconsistency of Liion traction batteries in electric vehicles[J]. Automotive engineering, 2014, 36(2): 181-188, 203.
[3] 靳文涛, 李相俊, 惠东, 等. 规模化储能电站电池一致性的统计特性研究[J]. 发电技术, 2021, 42(3): 298-305.
JIN W T, LI X J, HUI D, et al. Study on statistical characteristics of battery consistency in large-scale energy storage power stations[J]. Power generation technology, 2021, 42(3): 298-305.
[4] 贾学翠, 李相俊, 汪奂伶, 等. 基于运行数据融合的储能电池一致性评估方法研究[J]. 供用电, 2017, 34(4): 29-35.
JIA X C, LI X J, WANG H L, et al. Research on consistency assessment method for energy storage battery based on operating data fusion[J]. Power supply and consumption, 2017, 34(4): 29-35.
[5] 黄彧, 王占国, 张言茹, 等. 基于离群点检测的动力电池一致性快速辨识方法[J/OL]. 电测与仪表: 1-9[2021-07-27]. http://kns.cnki.net/kcms/detail/23.1202.TH.20210326.1545.004.html.
HUANG Y, WANG Z G, ZHANG Y R, et al. Fast identification method of power battery consistency based on outlier detection[J/OL]. Electrical measurement and instrumentation: 1-9[2021-07-27] http://kns.cnki.net/kcms/detail/23.1202.TH.20210326.1545.004.html.
[6] 邓一尊.大规模锂离子电池组不一致性辨识与均衡方法研究[D]. 上海: 上海交通大学, 2018.
DENG Y Z.Research on inconsistency identification and equalization method of large-scale lithium ion battery pack[D]. Shanghai: Shanghai Jiaotong University, 2018.
[7] 宋超, 熊刚, 谢勇波, 等. 基于ARIMA模型的动力电池不一致性预警研究[J]. 控制与信息技术, 2019(5): 82-87.
SONG C, XIONG G, XIE Y B, et al. Research on inconsistency early warning of power battery based on ARIMA model[J]. Control and information technology, 2019(5): 82-87.
[8] PLETT G L.Efficient battery pack state estimation using bar-delta filtering[C]//EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, stavanger, Norway, 2009: 1-8.
[9] ZHENG Y J, OUYANG M G, LU L G, et al. Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model[J]. Applied energy, 2013, 111: 571-580.
[10] SUN F C, XIONG R, HE H W.A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique[J]. Applied energy, 2016, 162: 1399-1409.
[11] 葛云龙, 陈自强.基于STF&LM算法的串联锂离子电池组不一致性辨识与状态估计[J]. 中国电机工程学报, 2018, 38(14): 4271-4280, 4333.
GE Y L, CHEN Z Q.Inconsistency identification and state estimation of series lithium ion battery pack based on STF & LM algorithm[J]. Proceedings of the CSEE, 2018, 38(14): 4271-4280, 4333.
[12] 叶春霖, 邱颖宁, 冯延晖.基于警报信号和D-S证据理论的风电机组故障诊断[J]. 太阳能学报, 2019, 40(12): 3613-3620.
YE C L, QIU Y N, FENG Y H.Fault diagnosis of wind turbine based on alarm signals and D-S evidence theory[J]. Acta energiae solaris sinica, 2019, 40(12): 3613-3620.
[13] 林优, 杨明, 韩学山, 等. 基于条件分类与证据理论的短期风电功率非参数概率预测方法[J]. 电网技术, 2016, 40(4): 1113-1119.
LIN Y, YANG M, HAN X S, et al. Nonparametric approach for short-term probabilistic wind generation forecast based on conditional classification and evidence theory[J]. Power system technology, 2016, 40(4): 1113-1119.
[14] 鲍海波, 韦化, 郭小璇, 等. 考虑风电不确定性的概率区间潮流模型与算法[J]. 中国电机工程学报, 2017, 37(19): 5633-5642, 5840.
BAO H B, WEI H, GUO X X, et al. The model and algorithm of probabilistic interval power flow considering wind power uncertainty[J]. Proceedings of the CSEE, 2017, 37(19): 5633-5642, 5740.
[15] 陈小龙.证据驱动型火电机组状态预警方法及其应用研究[D]. 南京: 东南大学, 2019.
CHEN X L.Research on state early warning method and its application of evidence driven thermal power units[D]. Nanjing: Southeast University, 2019.
[16] 鲍海波, 郭小璇, 韦化.结合证据理论和双层规划的电压稳定不确定分析[J]. 电力系统自动化, 2018, 42(5): 120-126, 146.
BAO H B, GUO X X, WEI H.Uncertainty analysis of voltage stability based on evidence theory and bilevel programming[J]. Automation of electric power systems, 2018, 42(5): 120-126, 146.
[17] YAGER R R.Decision making under Dempster-Shafer uncertainties[J]. International journal of general systems, 1992, 20(3): 233-245.
[18] DENOEUX T.A k-nearest neighbor classification rule based on Dempster-Shafer theory[J]. IEEE transactions on systems, man, and cybernetics, 1995, 25(5): 804-813.
[19] STONE M A.Cross-validatory choice and assessment of statistical predictions[J]. Journal of the Royal Statistical Society, 1974, 36(2): 111-147.
PDF(1748 KB)

Accesses

Citation

Detail

Sections
Recommended

/