ANALYSIS OF KEY TECHNOLOGIES FOR SOLAR HYDROGEN PRODUCTION

Li Jianlin, Liang Zhonghao, Li Guanghui, Song Jie, Xu Guizhi

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 2-10.

PDF(1916 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1916 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 2-10. DOI: 10.19912/j.0254-0096.tynxb.2022-0037

ANALYSIS OF KEY TECHNOLOGIES FOR SOLAR HYDROGEN PRODUCTION

  • Li Jianlin1, Liang Zhonghao1, Li Guanghui1, Song Jie2, Xu Guizhi2
Author information +
History +

Abstract

This article focuses on solar hydrogen production technology. First, it introduces the research status of solar hydrogen production technology; secondly, for solar hydrogen production technology, especially photocatalytic hydrogen production technology and thermochemical cycle water splitting hydrogen production technology, the technical principles, The key materials and technical difficulties are discussed in detail; finally, conclusions and suggestions are given on the research of solar hydrogen production technology, aiming to provide references and ideas for the future research and development layout of solar hydrogen production technology and industrial technology breakthroughs.

Key words

solar energy / photocatalytic hydrogen production / photoelectrochemical hydrogen production / thermochemical cycle hydrogen production / photosynthetic microorganism hydrogen production

Cite this article

Download Citations
Li Jianlin, Liang Zhonghao, Li Guanghui, Song Jie, Xu Guizhi. ANALYSIS OF KEY TECHNOLOGIES FOR SOLAR HYDROGEN PRODUCTION[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 2-10 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0037

References

[1] 李建林, 李光辉, 马速良, 等. 碳中和目标下制氢关键技术进展及发展前景综述[J], 热力发电, 2021, 50(6): 1-8.
LI J L, LI G H, MA S L, et al.Overview of the progress and development prospects of key technologies for hydrogen production under the goal of carbon neutrality[J]. Thermal power generation, 2021, 50(6): 1-8.
[2] 李建林, 李光辉, 梁丹曦, 等. “双碳目标”下可再生能源制氢技术综述及前景展望[J]. 分布式能源, 2021, 6(5): 1-9.
LI J L, LI G H, LIANG D X, et al.Overview and prospects of renewable energy hydrogen production technology under the “Dual-Carbon Target”[J]. Distributed energy, 2021, 6(5): 1-9.
[3] Hydrogen Council.Hydrogen Scaling up, A sustainable pathway for the global energy transition[R]. Bonn: The Hydrogen Council, 2017.
[4] 李建林, 梁忠豪, 梁丹曦, 等. “双碳”目标下绿氢制备及应用技术发展现状综述[J]. 分布式能源, 2021, 6(4): 25-33.
LI J L, LIANG Z H, LIANG D X, et al.A review of the development status of green hydrogen production and application technology under the “two-carbon” goal[J]. Distributed energy, 2021, 6(4): 25-33.
[5] 张凯, 王毅, 路朝阳, 等. 光照波长对HAU-M1光合菌群产氢影响的研究[J]. 太阳能学报, 2021, 42(4): 10-15.
ZHAGN K, WANG Y, LU Z Y, et al.Effects of light wavelength on hydrogen production by HAU-M1 photosynthetic bacteria[J]. Acta energiae solaris sinica, 2021, 42(4): 10-15.
[6] CAO S, CHAN T S, LU Y R, et al.Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes[J]. Nano energy, 2020, 67: 104-287.
[7] ZHANG J I, HU W P, CAO S, et al.Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting[J]. Nano research, 2020, 13(9): 2313-2322.
[8] 张凌峰, 胡忠攀, 刘歆颖, 等. TiO2基光解水析氢非贵金属共催化剂的研究[J]. 化学进展, 2016, 28(10): 1474-1488.
ZHAGN L F, HU Z P, LIU X Y, et al.Study on TiO2-based non-precious metal cocatalysts for photolysis of water and hydrogen evolution[J]. Progress in chemistry, 2016, 28(10): 1474-1488.
[9] HIROSHI N, TARO Y, MAMIKO N, et al.Photocata- lytic solar hydrogen production from water on a 100 m2-scale[J]. Nature, 2021, 598: 304-307.
[10] XUE W H, CHANG W X, HU X Y, et al.2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet: Fabrication mechanism and application potential for photocatalytic H2 evolution[J]. Chinese journal of catalysis, 2021, 42(1): 152-163.
[11] 于靖, 谭涓, 王亚飞, 等. 二氧化钛光解水制氢催化材料的晶相调控及复合改性研究[J]. 现代化工, 2020, 40(12): 168-172.
YU J, TAN J, WANG Y F, et al.Study on crystal phase regulation and composite modification of catalytic material for hydrogen production by photohydrolysis of water with titanium dioxide[J]. Modern chemical industry, 2020, 40(12): 168-172.
[12] ABANADES S, CHARVIN P, FLAMANT G, et al.Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy[J]. Energy, 2006, 31(14): 2805-2822.
[13] NORING J E, FLETCHER E A.High-temperature solar thermochemical processing hydrogen and sulfur from hydrogen-sulfide[J]. Energy, 1982, 7(8): 651-666.
[14] VILLASMIL W, STEINFELD A.Hydrogen production by hydrogen sulfide splitting using concentrated solar energy—Thermodynamics and economic evaluation[J]. Energy conversion and management, 2010, 51: 2353-2361.
[15] 蒋川, 韩一峰, 吴炎琳, 等. 新型固定床可回热式光热制氢系统结构设计研究[J]. 太阳能学报, 2021, 42(7): 269-277.
JIANG C, HAN Y F, WU Y L, et al.Research on the structure design of a new type of fixed-bed recuperative photothermal hydrogen production system[J]. Acta energiae solaris sinica, 2021, 42(7): 269-277.
[16] 吴芝, 孙岚, 林昌健. 太阳能光催化制氢研究进展[J]. 电化学, 2019, 25(5): 529-552.
WU Z, SUN L, LIN C J.Research progress of solar photocatalytic hydrogen production[J]. Electrochemistry, 2019, 25(5): 529-552.
[17] 刘泽华. SiI2和SiMI4(M=Ge,Sn)单层光催化水解制氢的第一性原理研究[D]. 烟台: 鲁东大学, 2021.
LIU Z H.SiI2 and SiMI2(M=Ge,Sn)First-principles study on photocatalytic hydrolysis of layers for hydrogen production[D]. Yantai: Ludong University, 2021.
[18] MOHAMMED I.A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles[J]. Solar energy, 2020, 45(6): 211-224.
[19] 李方园, 侯永江, 国洁, 等. 非贵金属光电催化材料分解水制氢研究进展[J]. 应用化工, 2021, 50(11): 3206-3209.
LI F Y, HOU Y J, GUO J, et al.Research progress of non-noble metal photocatalytic materials to decompose water to produce hydrogen[J]. Applied chemical industry, 2021, 50(11): 3206-3209.
[20] 韩晓晶. 非贵金属助催化剂提高TiO2光-热协同催化制氢性能研究[D]. 西安: 陕西科技大学, 2021.
HAN X J.Enhancement of TiO2 photo-thermal synergistic catalytic performance for hydrogen production by non-precious metal cocatalysts[D]. Xi’an: Shaanxi University of Science and Technology, 2021.
[21] 张河清. CdS基光催化材料构建及其光催化分解水制氢研究[D]. 南宁: 广西大学, 2021.
ZHAGN H Q.Construction of CdS-based photocatalytic materials and their photocatalytic water splitting for hydrogen production[D]. Nanning: Guangxi University, 2021.
[22] ZHANG M, SHANG Q G, WAN Y Q, et al.Self-templ- ate synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocata-lyticactivities in hydrogen generation[J]. Applied catalysis B: Environmental, 2019, 241: 149-158.
[23] 陈柏瑜, 胡天丁, 陕绍云, 等. MOF基的光解水制氢催化剂研究进展[J/OL]. 复合材料学报: 1-24[2022-01-08].https://doi.org/10.13801/j.cnki.fhclxb.20211011.001.
CHEN B Y, HU T D, SHAN S Y, et al.Research progress on MOF-based photocatalysts for water splitting and hydrogen production[J/OL]. Acta materiae compositae sinica: 1-24[2022-01-08].https://doi.org/10.13801/j.cnki.fhclxb.20211011.001.
[24] 吴琛, 赵宝军, 王俊, 等. Ni2+掺杂Cd0.5 Zn0.5S固溶体制备及可见光分解水制氢研究[J]. 有色金属(冶炼部分), 2021(10): 66-70.
WU C, ZHAO B J, WAGN J, et al.Ni2+ adulteration Cd0.5Zn0.5 study on preparation of solid solution and hydrogen production by visible light decomposition of water[J]. Non-ferrous metals (smelting part), 2021(10): 66-70.
[25] 房文健, 上官文峰. 太阳能光催化制氢反应体系及其材料研究进展[J]. 工业催化, 2016, 24(12): 1-7.
FANG W J, SHANGGUAN W F.Progress in reaction system and related materials for solar photocatalytic hydrogen production[J]. Industrial catalysis, 2016, 24(12): 1-7.
[26] 李春发. 二氧化钛光阳极体系优化及太阳能光电化学分解水制氢应用[D]. 镇江: 江苏大学, 2017.
LI C F.Optimization of titanium dioxide photoanode system and application in hydrogen production by solar energy photoelectrochemical water splitting[D]. Zhenjiang: Jiangsu University, 2017.
[27] LIU G Y, SHENG Y A, AGER J W, et al.Research advances towards large-scale solar hydrogen production from water[J]. Energy chem, 2019, 1(2): 8-18.
[28] 郭烈锦, 陈敬炜. 太阳能聚焦供热的生物质超临界水热化学气化制氢研究进展[J]. 电力系统自动化, 2013, 37(1): 38-46.
GUO L J, CHEN J W.Research progress of biomass supercritical hydrothermal chemical gasification for hydrogen production with solar focused heating[J]. Automation of electric power systems, 2013, 37(1): 38-46.
[29] 许子龙. 太阳能和燃料电池耦合的分布式供能系统研究[D]. 北京: 华北电力大学, 2016.
XU Z L.Research on distributed energy supply system coupled with solar energy and fuel cell[D]. Beijing: North China Electric Power University, 2016.
[30] 祝星, 王华, 魏永刚, 等. 金属氧化物两步热化学循环分解水制氢[J]. 化学进展, 2010, 22(5): 1010-1020.
ZHU X, WANG H, WEI Y G, et al.Metal oxides decompose water in a two-step thermochemical cycle to produce hydrogen[J]. Progress in chemistry, 2010, 22(5): 1010-1020.
[31] 胡以怀, 贾靖, 纪娟. 太阳能热化学制氢技术研究进展[J]. 能源工程, 2008(1): 19-23.
HU Y H, JIA J, JI J.Research progress in hydrogen production by solar thermal chemistry[J]. Energy engineering, 2008(1): 19-23.
[32] 李浩, 李鑫, 常哲韶, 等. 基于投影寻踪和层次分析的太阳能热化学制燃料的筛选方法[J]. 科学通报, 2017, 62(27): 3262-3269.
LI H, LI X, CHANG Z S, et al.Screening method of solar thermal fuels based on projection pursuit and analytic hierarchy process[J]. Scientific bulletin, 2017, 62(27): 3262-3269.
[33] XIAO L, WU S Y, LI Y R.Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions[J]. Renewable energy, 2012, 41: 1-12.
[34] 陈晶澈, 张彦威, 周俊虎. 两步式热化学循环分解水制氢研究进展[J]. 能源工程, 2016(2): 21-27.
CHEN J C, ZHANG Y W, ZHOU J H.Progress in two-step thermochemical cycle decomposition of water for hydrogen production[J]. Energy engineering, 2016(2): 21-27.
[35] 刘佩枝. 太阳能热化学制氢的热力学分析[D]. 西安: 西安建筑科技大学, 2020.
LIU P Z.Thermodynamic analysis of hydrogen production by solar thermal chemistry[D]. Xi’an University of Architecture and Technology, 2020.
[36] 郝庆菊. 碘硫循环制氢过程模拟优化和换热设计[D]. 北京: 中国石油大学(北京), 2016.
HAO Q J.Simulation optimization and heat transfer design of iodide-sulfur cycle hydrogen production process[D]. Beijing: China University of Petroleum, 2016.
[37] 张平, 于波, 陈靖, 等. 热化学循环分解水制氢研究进展[J]. 化学进展, 2005, 17(4): 643-650.
ZHANG P, YU B, CHEN J, et al.Research progress of hydrogen production by thermochemical cycle decomposition of water[J]. Progress in chemistry, 2005, 17(4): 643-650.
[38] 高一博. 基于高熵氧化物的微波两步热化学分解水制氢性能研究[D]. 济南: 山东大学, 2021.
GAO Y B.Study on hydrogen production by microwave two-step thermochemical decomposition of water based on high entropy oxide[D]. Ji’nan: Shandong University, 2021.
[39] 傅广实. 硫碘循环制氢中HI分解催化剂及全流程系统设计研究[D]. 杭州: 浙江大学, 2018.
FU G S.Design of HI decomposition catalyst and whole process system for hydrogen production by sulfur-iodine cycle[D]. Hangzhou: Zhejiang University, 2018.
[40] 孔慧. 太阳能热化学循环及反应器设计研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2018.
KONG H.Study on solar thermal chemical cycle and reactor design[D]. Beijing: University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2018.
[41] 周婷婷. Fe-Zr氧化物循环裂解水制氢过程研究[D]. 天津: 天津大学, 2016.
ZHOU T T.Study on hydrogen production process of Fe-Zr oxide by cyclic cracking water[D]. Tianjin: Tianjin University, 2016.
[42] 周梦宇. 天然气或液体燃料制氢新工艺[J]. 化工管理, 2018(6): 113.
ZHOU M Y.New process of hydrogen production from natural gas or liquid fuel[J]. Chemical enterprise management, 2018(6): 113.
[43] KOUMI N S, NJOMO D.An overview of hydrogen gas production from solar energy[J]. Renewable and sustainable energy reviews, 2012, 16(9): 6782-6792.
[44] 张勇, 彭勇刚, 韦巍. 计及制氢效率的光-储-氢系统协调控制策略研究[J]. 太阳能学报, 2021, 42(11): 67-75.
ZHANG Y, PENG Y G, WEI W.Research on coordinated control strategy of light-storage-hydrogen system considering hydrogen production efficiency[J]. Acta energiae solaris sinica, 2021, 42(11): 67-75.
[45] 邵志芳, 吴继兰. 基于动态电价风光电制氢容量配置优化[J]. 太阳能学报, 2020, 41(8): 227-235.
SHAO Z F, WU J L.Configuration optimization of wind and photovoltaic hydrogen production capacity based on dynamic electricity price[J]. Acta energiae solaris sinica, 2020, 41(8): 227-235.
[46] 张晨佳, 蔡军, 张玉魁, 等. 基于热力学平衡的高温固体氧化物电解水制氢模拟[J]. 太阳能学报, 2021, 42(9): 210-217.
ZHAGN C J, CAI J, ZHANG Y K, et al.Simulation of high temperature solid oxide electrolysis of water for hydrogen production based on thermodynamic equilibrium[J]. Acta energiae solaris sinica, 2021, 42(9): 210-217.
PDF(1916 KB)

Accesses

Citation

Detail

Sections
Recommended

/