FINITE ELEMENT ANALYSIS OF ALLOWABLE LOAD OF FIXED PHOTOVOLTAIC BRACKETS

Zhang Liang, Zhu Ziling, Luo Bingbing, Yang Xiaoyu

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (9) : 15-20.

PDF(2938 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2938 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (9) : 15-20. DOI: 10.19912/j.0254-0096.tynxb.2022-0046

FINITE ELEMENT ANALYSIS OF ALLOWABLE LOAD OF FIXED PHOTOVOLTAIC BRACKETS

  • Zhang Liang, Zhu Ziling, Luo Bingbing, Yang Xiaoyu
Author information +
History +

Abstract

For the fixed photovoltaic brackets, finite element simulations were carried out by using the experimental material properties and three-dimensional linear open beam elements. The accuracy of finite element simulation was verified by a simple beam based on actual measurement. According to the finite element simulation results, allowable load in serviceability limit state of brackets was determined. Subsequently, the influences of beam spacings, support columns number and column distances on allowable load were investigated respectively. Results show that the number of columns has the most significant effect on allowable load. With the increase of the number, the load is more evenly distributed on the whole bracket, and allowable load increases. On average, each additional pair of columns increases allowable load by about 1953 N. With the increase of beam spacing, supporting effect of the middle two beams by the column decreases, the local deflection increases and allowable load decreases. The variation of distance between front and rear columns mainly affects the load uniformity. When the distance is 50% of oblique beam horizontal projection length, the deflection is evenly distributed on the four beams, and the allowable load reaches maximum.

Key words

photovoltaic brackets / wind load / finite element analysis / stress / deformation / fixed

Cite this article

Download Citations
Zhang Liang, Zhu Ziling, Luo Bingbing, Yang Xiaoyu. FINITE ELEMENT ANALYSIS OF ALLOWABLE LOAD OF FIXED PHOTOVOLTAIC BRACKETS[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 15-20 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0046

References

[1] 王青, 孙頔, 张海霞, 等. 中国光伏行业2021年回顾与2022年展望[J]. 电气时代, 2022(5): 20-28.
WANG Q, SUN D, ZHANG H X, et al. Review of China's PV industry in2021 and prospect in 2022[J]. Electric age, 2022(5): 20-28.
[2] MING J, LIU Z Z, ZHANG Q Z.Optimization design and economical analysis of desert plant of solar module bracket[C]//International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 2010: 1628-1631.
[3] NIE J, RUAN Q, CHEN G H.Research for the stability of PV trestle rooted in the land without groundsill in Hohhot[C]//Second International Conference on Mechanic Automation and Control Engineering, Hohhot, China, 2011: 7559-7563.
[4] 明杰, 刘志璋, 王平. 无地基状态下光伏支架的稳定性测试[J]. 太阳能学报, 2012, 33(12): 2068-2073.
MING J, LIU Z Z, WANG P.Exploration of PV bracket without foundation[J]. Acta energiae solaris sinica, 2012, 33(12): 2068-2073.
[5] 黄华, 张梅, 何银涛. 固定式光伏支架承载能力试验研究[J]. 太阳能学报, 2020, 41(4): 7-13.
HUANG H, ZHANG M, HE Y T.Experimental study on load-carrying capacity of fixed photovoltaic bracket[J]. Acta energiae solaris sinica, 2020, 41(4): 7-13.
[6] 黄华, 张梅, 何银涛. 基于SAP2000的光伏固定支架结构承载力分析[J]. 太阳能, 2015(6): 47-49.
HUANG H, ZHANG M, HE Y T.Load-carrying capacity analysis of photovoltaic fixed bracket structure based on SAP2000[J]. Solar energy, 2015(6): 47-49.
[7] 陈源. 光伏支架结构优化设计研究[J]. 电气应用, 2013, 32(17): 76-80.
CHEN Y.Research on structural optimization design of photovoltaic bracket[J]. Electrotechnical application, 2013, 32(17): 76-80.
[8] 黄万山, 卢红前, 彭秀芳, 等. 光伏支架结构优化设计研究[J]. 武汉大学学报(工学版), 2018, 51(S1): 72-76.
HUANG W S, LU H Q, PENG X F, et al.Research on optimized design of structure of photovoltaic supporting bracket[J]. Engineering Journal of Wuhan University, 2018, 51(S1): 72-76.
[9] 柯锐, 朱晓东, 董中强, 等. 复合材料光伏支架结构设计及应用研究[J]. 玻璃钢/复合材料, 2018(2): 87-93.
KE R, ZHU X D, DONG Z Q, et al.Structure design of composite PV bracket and the application study of engineering[J]. Fiber reinforced plastics/composites, 2018(2): 87-93.
[10] 杨成, 陈建钧, 袁伟杰, 等. 复合材料光伏支架梁结构优化分析[J]. 太阳能学报, 2020, 41(3): 305-310.
YANG C, CHEN J J, YUAN W J, et al.Structural optimization of composite photovoltaic supporting beam[J]. Acta energiae solaris sinica, 2020, 41(3): 305-310
[11] 陈铎民. 太阳能光伏结构的力学研究[D]. 武汉: 华中科技大学, 2016.
CHEN D M.Mechanical research of solar photovoltaic structure[D]. Wuhan: Huazhong University of Science and Technology, 2016.
[12] 徐悦. 单层金属屋面-铝合金太阳能支架系统受力性能研究[D]. 苏州: 苏州科技大学, 2019.
XU Y.Study on mechanical performance of aluminum alloy solar support system placed on single-layer metal roofing[D]. Suzhou: Suzhou University of Science and Technology, 2019.
[13] 胡锋, 刘晓东, 袁阳光, 等. 波形钢腹板组合箱梁带栓钉埋入式抗剪连接件承载力推出试验及有限元模拟分析研究[J]. 工程力学, 2021(11): 43-56.
HU F, LIU X D, YUAN Y G, et al.The capacity of embedded shear connector studs of composite box girders with a corrugated steel web by push-out tests and fem analyses[J]. Engineering mechanics, 2021(11): 43-56.
[14] 张季, 谭灿星, 叶国涛, 等. SV波超临界角斜入射时层状地基地震动输入在ABAQUS中的实现[J]. 工程力学, 2021, 38(4): 200-210.
ZHANG J, TAN C X, YE G T, et al.Realization of ground motion input in ABAQUS for layered foundation under SV wave of oblique incidence over critical angle[J]. Engineering mechanics, 2021, 38(4): 200-210.
[15] GB 50797—2012,光伏发电站设计规范[S].
GB 50797—2012,Code for design of photovoltaic power station[S].
[16] 蒋华庆, 贺广零, 兰云鹏. 光伏电站设计技术[M]. 北京: 中国电力出版社, 2014: 106-110.
JIANG H Q, HE G L, LAN Y P.Design technology of photovoltaic power station[M]. Beijing: China Electric Power Press, 2014: 106-110.
PDF(2938 KB)

Accesses

Citation

Detail

Sections
Recommended

/