STUDY ON DEFECT DETECTION OF MORPHOLOGICAL INFRARED IMAGES BASED ON OPTIMAL MULTI-SCALE SET

Kang Shuang, Chen Changzheng, Liu Shi, Zhou Bo, Tang Wanru

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (6) : 145-152.

PDF(3079 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3079 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (6) : 145-152. DOI: 10.19912/j.0254-0096.tynxb.2022-0051

STUDY ON DEFECT DETECTION OF MORPHOLOGICAL INFRARED IMAGES BASED ON OPTIMAL MULTI-SCALE SET

  • Kang Shuang1,2, Chen Changzheng1, Liu Shi3, Zhou Bo1, Tang Wanru2
Author information +
History +

Abstract

Image enhancement is very important in infrared defect detection of wind turbine blades. Aiming at the problem of low image definition in infrared detection, an adaptive iterative threshold weighted difference top-hat transform infrared image enhancement method (AITWD top-hat) is proposed in this paper. Firstly, multiple groups of top-hat information are obtained by multi-scale white top-hat and black top-hat transformation. Secondly, in order to obtain more image detail features, using the Contrast improvement ratio(CIR) as the threshold function, an iterative threshold image weighting method is proposed, and the optimal scale set image is fused to obtain the enhanced image. Finally, the proposed method is compared and verified with the existing methods from both qualitative and quantitative aspects. The experimental results show that this method not only has good image detail enhancement effect, but also effectively overcomes the problem of poor stability in traditional morphological image enhancement, the PSNR value and SSIM value are increased by 9.01% and 9.07% respectively.

Key words

wind turbine blades / top-hat transform / image enhancement / adaptive threshold iteration

Cite this article

Download Citations
Kang Shuang, Chen Changzheng, Liu Shi, Zhou Bo, Tang Wanru. STUDY ON DEFECT DETECTION OF MORPHOLOGICAL INFRARED IMAGES BASED ON OPTIMAL MULTI-SCALE SET[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 145-152 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0051

References

[1] 康爽, 陈长征, 罗园庆, 等.基于微分形态学梯度风力发电机叶片缺陷边缘增强的红外检测研究[J]. 太阳能学报, 2021, 42(6): 432-437.
KANG S, CHEN C Z, LUO Y Q, et al.Study on infrared detection edge enhancement of wind turbine blade defects based on differential morphology gradient[J]. Acta energiae solaris sinica, 2021, 42(6): 432-437.
[2] BEALE C, NIEZRECKI C, INALPOLAT M.An adaptive wavelet packet denoising algorithm for enhanced active acoustic damage detection from wind turbine blades[J]. Mechanical systems and signal processing, 2020, 142: 106754.
[3] ZHANG Y, ZHOU B, YU F, et al.Cluster analysis of acoustic emission signals and infrared thermography for defect evolution analysis of glass/epoxy composites[J]. Infrared physics & technology, 2021, 112(17): 103581.
[4] BHANDARI A K, KUMAR A, SINGH G K.Improved knee transfer function and gamma correction based method for contrast and brightness enhancement of satellite image[J]. AEU-International journal of electronics and communications, 2015, 69(2): 579-589.
[5] 赵素娜, 艾矫燕, 李世晓. 小波变换在图像照度不均校正中的应用[J]. 计算技术与自动化, 2010, 29(1): 99-101.
ZHAO S N, AI J Y, LI S X.Application of wavelet transform in illumination uneven elimination[J]. Computing technology and automation, 2010, 29(1): 99-101.
[6] 王殿伟, 韩鹏飞, 范九伦, 等. 基于光照-反射成像模型和形态学操作的多谱段图像增强算法[J]. 物理学报, 2018, 67(21): 104-114.
WANG D W, HAN P F, FAN J L, et al.Multispectral image enhancement based on illuminance-reflection imaging model and morphology operation[J]. Acta physica sinica, 2018, 67(21): 104-114.
[7] 顾兴龙, 王凯, 李露露, 等. 广义形态学闭开差值运算在滚动轴承弱故障诊断中的应用[J]. 中国机械工程, 2017, 28(21): 2595-2600.
GU X L, WANG K, LI L L, et al.Applications of generalized morphological closed and open margin Operation to diagnose weak faults of rolling bearings[J]. China mechanical engineering, 2017, 28(21): 2595-2600.
[8] HASSANPOUR H, SAMADIANI N, MAHDI SALEHI S M. Using morphological transforms to enhance the contrast of medical images[J]. The Egyptian journal of radiology and nuclear medicine, 2015, 46(2): 481-489.
[9] 俞建卫, 罗振山, 尹延国, 等. 基于形态学边缘检测和小波阈值的摩擦副红外图像去噪[J]. 中国机械工程, 2013, 24(9): 1229-1232.
YU J W, LUO Z S, YIN Y G, et al.Study on infrared image denoising of friction pairs based on morphological edge detection and wavelet threshold[J]. China mechanical engineering, 2013, 24(9):1229-1232.
[10] PETER B, NORMAN S C, GRAHAM M G J, et al. Fast retinal vessel detection and measurement using wavelets and edge location refinement[J]. PLoS ONE, 2012, 7(3): 1-12.
[11] 康爽, 陈长征, 赵思雨, 等. 自适应差异多尺度形态学的风力机叶片红外图像增强研究[J]. 中国机械工程, 2021, 32(7): 786-792.
KANG S, CHEN C Z, ZHAO S Y, et al.Study of infrared image enhancement of wind turbine blades based on adaptive differential multiscale morphology[J]. China mechanical engineering, 2021, 32(7): 786-792.
[12] LI Y B, LI G Y, YANG Y T, et al.A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy[J]. Mechanical systems and signal processing, 2018, 105: 319-337.
[13] LYU J X, YU J B.Average combination difference morphological filters for fault feature extraction of bearing[J]. Mechanical systems and signal processing, 2018, 100: 827-845.
[14] LI Y, ZUO M, CHEN Y, et al.An enhanced morphology gradient product filter for bearing fault detection[J]. Mechanical systems and signal processing, 2018, 109(SEP.): 166-184.
[15] YAN X A, LIU Y, JIA M P.Research on an enhanced scale morphological-hat product filtering in incipient fault detection of rolling element bearings[J]. Measurement, 2019(2019):106856.
[16] LI B, ZHANG P L, WANG Z J, et al.A weighted multi-scale morphological gradient filter for rolling element bearing fault detection[J]. ISA transactions, 2011, 50(4):599-608.
[17] BUSTACARA-MEDINA C, FLÓREZ-VALENCIA L. An automatic stopping criterion for contrast enhancement using multi-scale top-hat transformation[J]. Sensing and imaging, 2019, 20(1): 26.
[18] WANG Z,BOVIK A C.Mean squared error: love it or leave it? A new look at signal fidelity measures[J]. IEEE signal processing magazine, 2009, 26(1): 98-117.
[19] RENIEBLAS G P, NOGUÉS AT, GONZALEZ AM, et al. Structural similarity index family for image quality assessment in radiological images[J]. Journal of medical imaging, 2017, 4(3): 035501.
PDF(3079 KB)

Accesses

Citation

Detail

Sections
Recommended

/