SIMULATION OF AUXILIARY SUPPLY COOLING IN HIGH PRESSURE HYDROGEN SUPPLY SYSTEM FOR FUEL CELL VEHICLE

Song Zehua, Ye Fang, Chen Hao, Guo Hang, Zhang Weibo

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (6) : 530-535.

PDF(1775 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1775 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (6) : 530-535. DOI: 10.19912/j.0254-0096.tynxb.2022-0074

SIMULATION OF AUXILIARY SUPPLY COOLING IN HIGH PRESSURE HYDROGEN SUPPLY SYSTEM FOR FUEL CELL VEHICLE

  • Song Zehua1, Ye Fang1, Chen Hao1, Guo Hang1, Zhang Weibo2
Author information +
History +

Abstract

Through the numerical simulation method, the auxiliary cooling scheme of the hydrogen supply system is evaluated under the conditions of steady state and driving cycle. The simulation results show that the high expansion ratio of hydrogen is beneficial to reduce the energy consumption of the air conditioning system. When the ambient temperature is 45 ℃, the auxiliary cooling scheme can reduce the energy consumption of the air conditioning system by 5.4% under driving cycle in China for passenger vehicles. However, the auxiliary cooling scheme brings some challenges to the stable operation of the air conditioning system and the control of the cabin temperature.

Key words

fuel cell vehicle / hydrogen / high pressure hydrogen supply / thermal management / numerical simulation

Cite this article

Download Citations
Song Zehua, Ye Fang, Chen Hao, Guo Hang, Zhang Weibo. SIMULATION OF AUXILIARY SUPPLY COOLING IN HIGH PRESSURE HYDROGEN SUPPLY SYSTEM FOR FUEL CELL VEHICLE[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 530-535 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0074

References

[1] WU E Q, ZHAO Y, ZHAO B, et al.Fatigue life prediction and verification of high-pressure hydrogen storage vessel[J]. International journal of hydrogen energy, 2021, 46(59): 30412-30422.
[2] CORREA-JULLIAN C, GROTH K M.Data requirements for improving the quantitative risk assessment of liquid hydrogen storage systems[J]. International journal of hydrogen energy, 2022, 47(6): 4222-4235.
[3] TONG L, YUAN Y P, YANG T Q, et al.Hydrogen release from a metal hydride tank with phase change material jacket and coiled-tube heat exchanger[J]. International journal of hydrogen energy, 2021, 46(63): 32135-32148.
[4] NIERMANN M, TIMMERBERG S, DRÜNERT S, et al. Liquid organic hydrogen carriers and alternatives for international transport of renewable hydrogen[J]. Renewable and sustainable energy reviews, 2021, 135:110171.
[5] MORENO-BLANCO J, PETITPAS G, ESPINOSA-LOZA F, et al.The storage performance of automotive cryo-compressed hydrogen vessels[J]. International journal of hydrogen energy, 2019, 44(31): 16841-16851.
[6] CHABANE D, IBRAHIM M, HAREL F, et al.Energy management of a thermally coupled fuel cell system and metal hydride tank[J]. International journal of hydrogen energy, 2019, 44(50): 27553-27563.
[7] PFEIFER P, WALL C, JENSEN O, et al.Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank[J]. International journal of hydrogen energy, 2009, 34(8): 3457-3466.
[8] NASRI M, DICKINSON D.Thermal management of fuel cell-driven vehicles using HT-PEM and hydrogen storage[C]//2014 Ninth International Conference on Ecological Vehicles and Renewable Energies, Monaco, 2014.
[9] ZHU D, AIT-AMIRAT Y N, DIAYE A, et al. Active thermal management between proton exchange membrane fuel cell and metal hydride hydrogen storage tank considering long-term operation[J]. Energy conversion and management, 2019, 202: 112187.
[10] TETUKO A P, SHABANI B, OMRANI R, et al.Study of a thermal bridging approach using heat pipes for simultaneous fuel cell cooling and metal hydride hydrogen discharge rate enhancement[J]. Journal of power sources, 2018, 397: 177-188.
[11] 徐展, 魏蔚, 许春华, 等. 面向车载深冷高压供氢系统的控制策略研究[J]. 太阳能学报, 2021, 42(5): 32-38.
XU Z, WEI W, XU C H, et al.Research on control strategy for on-board cryo-compressed hydrogen supply system[J]. Acta energiae solaris sinica, 2021, 42(5): 32-38.
[12] AL-ZAREER M, DINCER I, ROSEN M A.Performance assessment of a new hydrogen cooled prismatic battery pack arrangement for hydrogen hybrid electric vehicles[J]. Energy conversion and management, 2018, 173: 303-319.
[13] 那晓雨, 康慧芳, 韩凯, 等. 氢燃料电池汽车高压氢气制冷装置: CN201720557250.4[P].2018-05-18.
NA X Y, KANG H F, HAN K, et al. Hydrogen fuel cell vehicle high pressure hydrogen refrigeration unit: CN201720557250.4[P].2018-05-18.
[14] 张文春, 纪峻岭, 冯樱. 汽车理论[M]. 北京: 机械工业出版社, 2005.
ZHANG W C, JI J L, FENG Y.Automobile theory[M]. Beijing: China Machine Press, 2005.
[15] XU J M, ZHANG C Z, FAN R J, et al.Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle[J]. Energy, 2020, 199: 117495.
[16] LI W.Simplified steady-state modeling for hermetic compressors with focus on extrapolation[J]. International journal of refrigeration, 2012, 35(6): 1722-1733.
[17] 张可欣. 电动汽车热泵空调系统性能分析平台设计[D]. 长春: 吉林大学, 2020.
ZHANG K X.Design of performance analysis platform for electric vehicle heat pump air conditioning system[D]. Changchun: Jilin University, 2020.
[18] 周英杰. 电动汽车冬季负荷及制热调节特性研究[D]. 合肥: 合肥工业大学, 2020.
ZHOU Y J.Study on winter load and heating regulation characteristics of electric vehicle[D]. Hefei: Hefei University of Technology, 2020.
[19] 马进, 回振桥, 王松, 等. 阳光照射下汽车内部件温度的数学模型[J]. 现代电子技术, 2017, 40(14): 5-9.
MA J, HUI Z Q, WANG S, et al.Mathematical model for temperature of parts inside automobile under sunlight[J]. Modern electronics technique, 2017, 40(14): 5-9.
[20] 张聪哲. 基于热泵空调和蓄热的纯电动汽车整车热管理系统模拟[D]. 北京: 北京工业大学, 2018.
ZHANG C Z.Simulation of thermal management system for a pure electric vehicle with heat pump air condition and heat storage[D]. Beijing: Beijing University of Technology, 2018.
[21] GB/T 38146.1—2019, 国家市场监督管理总局, 中国国家标准化管理委员会. 中国汽车行驶工况第1部分: 轻型汽车[S].
GB/T 38146.1—2019, State Administration for Market Regulation, Standardization Administration. China automotive test cycle—Part 1: Light-duty vehicles[S].
PDF(1775 KB)

Accesses

Citation

Detail

Sections
Recommended

/