RESEARCH ON INFLUENCE OF CURRENT CHARACTERISTICS ON PERFORMANCE OF LITHIUM-ION BATTERY

Shen Yongpeng, Sun Songnan, Sun Jianbin, Sun Dong, Tang Yaohua, Wang Yanfeng

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 61-70.

PDF(2139 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2139 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 61-70. DOI: 10.19912/j.0254-0096.tynxb.2022-0078

RESEARCH ON INFLUENCE OF CURRENT CHARACTERISTICS ON PERFORMANCE OF LITHIUM-ION BATTERY

  • Shen Yongpeng1, Sun Songnan1, Sun Jianbin1, Sun Dong1, Tang Yaohua2, Wang Yanfeng1
Author information +
History +

Abstract

Four types of lithium-ion batteries, namely, nickel cobalt manganese oxide(NCM), nickel cobalt aluminum oxide(NCA), lithium iron phosphate(LFP), and lithium titanate(LTO), are used as the research objects to establish a test experimental platform, an experimental procedure is designed, and different current characteristics and environmental temperatures are studied. The discharging current curve, discharging rate, and temperature are considered to explore the effect of operating conditions on available energy and temperature rise of four types of lithium-ion power batteries. The experimental results show that temperature is one of the main factors affecting the available energy of the battery, in which the available energy of the LTO battery is least affected by temperature, and the LFP battery is most affected. The discharge rate is another key factor affecting the available energy of the battery. With the increase of discharge rate, the available energy of the four types batteries attenuates to different degrees. The step current or step discharge frequency may have a greater impact on the available energy of NCM battery and LFP battery.

Key words

lithium-ion battery / current characteristics / environmental temperatures / available energy / temperature rise

Cite this article

Download Citations
Shen Yongpeng, Sun Songnan, Sun Jianbin, Sun Dong, Tang Yaohua, Wang Yanfeng. RESEARCH ON INFLUENCE OF CURRENT CHARACTERISTICS ON PERFORMANCE OF LITHIUM-ION BATTERY[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 61-70 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0078

References

[1] 姜海洋, 杜尔顺, 金晨, 等. 高比例清洁能源并网的跨国互联电力系统多时间尺度储能容量优化规划[J]. 中国电机工程学报, 2021, 41(6): 2101-2115.
JIANG H Y, DU E S, JIN C, et al.Optimal planning of multi-time scale energy storage capacity of cross-national interconnected power system with high proportion of clean energy[J]. Proceedings of the CSEE, 2021, 41(6): 2101-2115.
[2] 文旭, 陈鑫, 张爱枫, 等. 含可调节负荷的风光互补微电网随机调度市场风险管控方法[J]. 电网技术, 2021, 45(11): 4308-4318.
WEN X, CHEN X, ZHANG A F, et al.Stochastic dispatching market risk control for wind and photovoltaic microgrid integrated with adjustable load[J]. Power system technology, 2021, 45(11): 4308-4318.
[3] 宋航, 刘友波, 刘俊勇, 等. 考虑用户侧分布式储能交互的售电公司智能化动态定价[J]. 中国电机工程学报, 2020, 40(24): 7959-7972, 8233.
SONG H, LIU Y B, LIU J Y, et al.Intelligent dynamic pricing of electricity retailers considering distributed energy storage interaction on user side[J]. Proceedings of the CSEE, 2020, 40(24): 7959-7972, 8233.
[4] 徐青山, 吕亚娟, 丁逸行. 考虑储能动态效率的风储微网三阶段协调优化[J]. 电网技术, 2020, 44(3): 816-822.
XU Q S, LYU Y J, DING Y X.Three-stage coordinated optimization of wind-storage microgrids considering dynamic efficiency characteristics of energy storage[J]. Power system technology, 2020, 44(3): 816-822.
[5] 侯慧, 徐焘, 肖振锋, 等. 基于重力储能的风光储联合发电系统容量规划与评价[J]. 电力系统保护与控制, 2021, 49(17): 74-84.
HOU H, XU T, XIAO Z F, et al.Optimal capacity planning and evaluation of a wind-photovoltaic-storage hybrid power system based on gravity energy storage[J]. Power system protection and control, 2021, 49(17): 74-84.
[6] 刘志成, 彭道刚, 赵慧荣, 等. 双碳目标下储能参与电力系统辅助服务发展前景[J]. 储能科学与技术, 2022, 11(2): 704-716.
LIU Z C, PENG D G, ZHAO H R, et al.Development prospects of energy storage participating in auxiliary services of power system under the targets of dualcarbon goal[J]. Energy storage science and technology, 2022, 11(2): 704-716.
[7] 于维珂, 汪涛, 杨尘. 储能用锂离子电池充放电能量效率的影响因素[J]. 电池, 2020, 50(6): 552-555.
YU W K, WANG T, YANG C.Influence factors of charge-discharge energy efficiency of Li-ion battery for energy storage[J]. Battery bimonthly, 2020, 50(6): 552-555.
[8] 李天奇, 李悦, 潘崇超. 锂离子电池恒流充电的温度及产热特性分析[J]. 电源技术, 2021, 45(7): 872-876.
LI T Q, LI Y, PAN C C.Analysis of temperature and heat generation characteristics in lithium-ion battery constant current charging[J]. Chinese journal of power sources, 2021, 45(7): 872-876.
[9] HUANG X R, LIU W J, ACHARYA A B, et al.Effect of pulsed current on charging performance of lithium-ion batteries[J]. IEEE transactions on industrial electronics, 2022, 69(10): 10144-10153.
[10] 姚雷, 侯俊剑, 翟洪飞, 等. 不同温度下锂离子动力电池特性研究[J]. 电源技术, 2019, 43(9): 1445-1447,1452.
YAO L, HOU J J, ZHAI H F, et al.Study on the characteristics of lithium-ion battery under different ambient temperatures[J]. Chinese journal of power sources, 2019, 43(9): 1445-1447,1452.
[11] 张立玉, 路昭, 韦立川, 等. 锂离子动力电池性能与温度相关性的基础实验研究[J]. 西安交通大学学报, 2018, 52(5): 133-141.
ZHANG L Y, LU Z, WEI L C, et al.Experimental research on the correlation of lithium-ion battery performance with temperature condition[J]. Journal of Xi’an Jiaotong University, 2018, 52(5): 133-141.
[12] ZHANG Y, CHEN X P, ZHOU Y F.The influence of coupling of charge/discharge rate and short term cycle on the battery capacity of Li-ion batteries[C]//2019 3rd International Conference on Electronic Information Technology and Computer Engineering, Xiamen, China, 2019.
[13] LIU X, HUI S Y R. An analysis of a double-layer electromagnetic shield for a universal contactless battery charging platform[C]//2005 IEEE 36th Power Electronics Specialists Conference, Dresden, Germany, 2006.
[14] RAIHAN G A, BASIR A, RAFI A A, et al.Comparative characteristics analysis of thermal and electro-chemical behavior of lithium ion battery using finite element method[C]//2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering, Rajshahi, Bangladesh, 2018.
[15] IASLAM S M R, PARK S Y. Quantification of heat loss for different charging profiles in a Li-ion battery[J]. IEEE transactions on energy conversion, 2021, 36(3): 1831-1840.
[16] HU Z X B, LI Y, LIU F R, et al. Thermal characteristics investigation of lithium-ion battery under high-frequency AC excitation in low-temperature environment[J]. IEEE transactions on transportation electrification, 2022, 8(1): 407-419.
[17] OSSWALD P J, ERHARD S V, NOEL A, et al, Current density distribution in cylindrical Li-ion cells during impedance measurements[J]. Journal of power sources, 2016, 314: 93-101.
[18] UNO M, TANAKA K.Influence of high-frequency charge-discharge cycling induced by cell voltage equalizers on the life performance of lithium-ion cells[J]. IEEE transactions on vehicular technology, 2011, 60(4): 1505-1515.
[19] UDDIN K, MOORE A D, BARAI A, et al.The effects of high frequency current ripple on electric vehicle battery performance[J]. Applied energy, 2016, 178: 142-154.
[20] UDDIN K, SOMERVILLE L, BARAI A, et al.The impact of high-frequency-high-current perturbations on film formation at the negative electrode-electrolyte interface[J]. Electrochimica acta, 2017, 233: 1-12.
[21] VETTER J, NOVAK P, WAGNER M R, et al.Ageing mechanisms in lithium-ion batteries[J]. Journal of power sources, 2005, 147(1-2): 269-281.
[22] LI Y Q, ZHANG B H, CHEN M, et al.Investigation of the internal resistance in LiFePO4 cells for battery energy storage system[C]//2014 9th IEEE Conference on Industrial Electronics & Applications, Hangzhou, China, 2014.
[23] WAHYUDDIN M I, PRIAMBODO P S, SUDIBYO H.Direct current load effects on series battery internal resistance[C]//2017 15th International Conference on Quality in Research (QiR): International Symposium on Electrical and Computer Engineering, Nusa Dua, Bali, Indonesia, 2017.
[24] BRAND M J, HOFMANN M H, SCHUSTER S, et al.The influence of current ripples on the lifetime of lithium-ion batteries[J]. IEEE transactions on vehicular technology, 2018, 67(11): 10438-10445.
[25] 刘小虹. 锂离子电池快速充电及高倍率放电性能[J]. 电源技术, 2011, 35(7): 768-771.
LIU X H.Fast charge and high rate discharge performance of lithium-ion battery[J]. Chinese journal of power sources, 2011, 35(7): 768-771.
[26] FATULLAH M A, RAHARDJO A, HUSNAYAIN F.Analysis of discharge rate and ambient temperature effects on lead acid battery capacity[C]//2019 IEEE International Conference on Innovative Research and Development(ICIRD), Jakarta, Indonesia, 2019.
[27] WANG Z P, MA J, ZHANG L.Finite element thermal model and simulation for a cylindrical Li-ion battery[J]. IEEE access, 2017, 5: 15372-15379.
[28] LIU X H.Fast charge and high rate discharge performance of lithium-ion battery[J]. Chinese journal of power sources, 2011, 35(7): 768-771.
[29] 张玥, 江艳梅, 张辉. 电动汽车锂离子电池大倍率放电下热性能分析[J]. 时代汽车, 2019(15): 85-86.
ZHANG Y, JIANG Y M, ZHANG H.Thermal performance analysis of electric vehicle lithium-ion battery under high-rate discharge[J]. Auto time, 2019(15): 85-86.
PDF(2139 KB)

Accesses

Citation

Detail

Sections
Recommended

/