PERFORMANCE RESEARCH OF RADIAL-INFLOW TURBINE IN OCEAN THERMAL ENERGY CONVERSION

Ding Ce, Liu Xiangdong, Zhang Chengbin, Chen Yongping

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 1-7.

PDF(2531 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2531 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 1-7. DOI: 10.19912/j.0254-0096.tynxb.2022-0079

PERFORMANCE RESEARCH OF RADIAL-INFLOW TURBINE IN OCEAN THERMAL ENERGY CONVERSION

  • Ding Ce1, Liu Xiangdong2, Zhang Chengbin1, Chen Yongping1
Author information +
History +

Abstract

Aiming at the high-efficiency OTEC application, a 3 kW radial-inflow turbine using R134a was constructed. In addition, a 3D CFD simulation was carried out to research the turbine performance and analyze the variable conditions. Finally, the influences of radial clearance and the number of rotor blades on the performance of radial-inflow turbines are analyzed. It is indicated that the performance of the designed turbine is satisfactory with a theoretical isentropic efficiency of 84.96%. The results show that the optimal rotational speed of turbine increases with the increasement of inlet pressure. When the rotational speeds deviate from the optimal value, the turbine efficiency decreases. The results also indicate that the increasement of inlet pressure increases the output work of turbine. With the increasement of rotational speed, the flow rate gradually decreases. In terms of optimization, the radial clearance between the nozzle and the rotor makes the working fluid flow more uniform at the nozzle outlet. Finally, the turbine performance is improved by increasing the number of rotor blades to 8.

Key words

ocean thermal energy conversion / organic Rankine cycle / radial-inflow turbine / numerical simulation / R134a

Cite this article

Download Citations
Ding Ce, Liu Xiangdong, Zhang Chengbin, Chen Yongping. PERFORMANCE RESEARCH OF RADIAL-INFLOW TURBINE IN OCEAN THERMAL ENERGY CONVERSION[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 1-7 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0079

References

[1] LANGER J,QUIST J, BLOK K.Recent progress in the economics of ocean thermal energy conversion: critical review and research agenda[J]. Renewable and sustainable energy reviews, 2020, 130: 109960.
[2] NITHESH K G, CHATTERJEE D, OH C, et al.Design and performance analysis of radial-inflow turboexpander for OTEC application[J]. Renewable energy, 2016, 85: 834-843.
[3] 韩中合, 赵若丞, 范伟. 有机工质向心透平变工况性能预测及系统性能分析[J]. 太阳能学报, 2019, 40(12): 3409-3416.
HAN Z H,ZHAO R C, FAN W.Off-design performance prediction and system thermal performance analysis of radial turbine with organic fluid[J]. Acta energiae solaris sinica, 2019, 40(12): 3409-3416.
[4] FIASCHI D, MANFRIDA G, MARASCHIELLO F.Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles[J]. Applied energy, 2012, 97: 601-608.
[5] 李艳, 李海波, 顾春伟. 有机工质向心透平气动设计与变工况性能预测[J]. 工程热物理学报, 2013, 34(1): 63-66.
LI Y,LI H B,GU C W.Aerodynamic design and off-design performance prediction of radial-inflow turbine with organic gas as working fluid[J]. Journal of engineering thermophysics, 2013, 34(1): 63-66.
[6] 葛云征, 彭景平, 吴浩宇, 等. 海洋温差能向心透平的气动设计及性能研究[J]. 可再生能源, 2019, 37(10): 1560-1566.
GE Y Z,PENG J P,WU H Y,et al.Design and performance study of a radial-inflow tubine in OTEC[J]. Renewable energy resources, 2019, 37(10): 1560-1566.
[7] SAURET E, GU Y T.Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine[J]. Applied energy, 2014, 135: 202-211.
[8] DU Y, CHEN K, DAI Y P.A study of the optimal control approach for a Kalina cycle system using a radial-inflow turbine with variable nozzles at off-design conditions[J]. Applied thermal engineering, 2019, 149: 1008-1022.
[9] 肖刚, 卢嘉冀, 周鑫, 等. 多能互补布雷顿循环中向心透平性能研究[J]. 太阳能学报, 2021, 42(6): 198-202.
XIAO G,LU J J,ZHOU X,et al.Characteristic of radial turbine for solar hybrid brayton cycle system[J]. Acta energiae solaris sinica, 2021, 42(6): 198-202.
[10] KIM D Y, KIM Y T.Preliminary design and performance analysis of a radial inflow turbine for ocean thermal energy conversion[J]. Renewable energy, 2017, 106: 255-263.
[11] 计光华. 透平膨胀机[M]. 北京: 机械工业出版社, 1989: 114-129.
JI G H.Turbine expander[M]. Beijing: Machinery Industry Press,1989: 114-129.
[12] ANSYS, Inc.ANSYS CFX-solver theory guide[M]. Canonsburg: ANSYS, Inc., 2016: 79-91.
[13] KERRY L M, JEFFREY E H.Experimental performance and analysis of 15.04 centimeter-tip-diameter, radial-inflow turbine with work factor of 1.126 and thick blading[R]. NASA TP-1730, 1980.
PDF(2531 KB)

Accesses

Citation

Detail

Sections
Recommended

/