DYNAMIC RESPONSE ANALYSIS OF FLOATING OFFSHORE WIND TURBINES BLADES BASED ON PANEL METHOD AND FINITE ELEMENT METHOD

Chen Diyu, Liu Liqin, Li Yan, Zhang Ruoyu

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 374-382.

PDF(2602 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2602 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 374-382. DOI: 10.19912/j.0254-0096.tynxb.2022-0093

DYNAMIC RESPONSE ANALYSIS OF FLOATING OFFSHORE WIND TURBINES BLADES BASED ON PANEL METHOD AND FINITE ELEMENT METHOD

  • Chen Diyu, Liu Liqin3, Li Yan3, Zhang Ruoyu3
Author information +
History +

Abstract

Considering the hydro-aero coupled model, the numerical simulation algorithm on the dynamic response of floating offshore wind turbines (FOWTs) under environmental loading including wind and waves is established. The pressure distribution and time-varying aerodynamic loads on each blade are calculated with velocity-potential based panel method. Then the finite element model of NREL 5 MW wind turbine is established, and the blade deformation and stress distribution are obtained through the transient analysis. The results show that the von Mises stress is greater where the elements are closer to the root in the span direction, while the larger stress can be also observed near the leading edge in the chord direction. Comparing with the wind loads acting alone, the wave load will lead to the larger surge and pitch amplitudes. This amplified motion can transmit more energy to the upper wind turbines which will cause larger blade deformations and stresses.

Key words

aerodynamic loads / offshore wind turbines / dynamic response / unsteady panel method / finite element method

Cite this article

Download Citations
Chen Diyu, Liu Liqin, Li Yan, Zhang Ruoyu. DYNAMIC RESPONSE ANALYSIS OF FLOATING OFFSHORE WIND TURBINES BLADES BASED ON PANEL METHOD AND FINITE ELEMENT METHOD[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 374-382 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0093

References

[1] KECSKEMETY K M, MCNAMARA J J.Influence of wake dynamics on the performance and aeroelasticity of wind turbines[J]. Renewable energy, 2016, 88: 333-345.
[2] 常卡, 王坤鹏. 风浪联合下导管架式风机结构疲劳特性研究[J]. 可再生能源, 2021, 39(12): 1617-1622.
CHANG K, WANG K P, Study on structural fatigue characteristics of jacket type wind turbine under combined wind and wave[J]. Renewable energy resources, 2021, 39(12): 1617-1622.
[3] 段磊, 李晔. 漂浮式海上大型风力机研究进展[J]. 中国科学: 物理学力学天文学, 2016, 46(12): 18-28.
DUAN L, LI Y.Progress of recent research and development in floating offshore wind turbines[J]. Scientia sinica(physica, mechanica & astronomica), 2016, 46(12): 18-28.
[4] SILVA L, CAZZOLATO B, SERGIIENKO N Y, et al.Efficient estimation of the nonlinear aerodynamic loads of floating offshore wind turbines under random waves and wind in frequency domain[J]. Journal of ocean engineering and marine energy, 2021: 1-17.
[5] LI Y W, PAIK K J, TAO X, et al.Dynamic overset CFD simulations of wind turbine aerodynamics[J]. Renewable energy, 2012, 37(1): 285-298.
[6] TRAN T T, KIM D H.A CFD study of coupled aerodynamic-hydrodynamic loads on a semisubmersible floating offshore wind turbine[J]. Wind energy, 2018, 21(1): 70-85.
[7] 李浩然, 胡志强, 王晋. 风浪联合作用下浮式风力机叶片结构强度分析[J]. 太阳能学报, 2018, 39(2): 406-411.
LI H R, HU Z Q, WANG J.Blade structural strength analysis of offshore floating wind turbine under wind and wave joint action[J]. Acta energiae solaris sinica, 2018, 39(2): 406-411.
[8] 刘传辉. 风洞风机叶片结构设计与强度分析[D]. 哈尔滨: 哈尔滨工程大学, 2017.
LIU C H.Structural design and strength analysis of fan blade in wind tunnel[D]. Harbin: Harbin Engineering University, 2017.
[9] GRECO L, TESTA C.Wind turbine unsteady aerodynamics and performance by a free-wake panel method[J]. Renewable energy, 2021, 164: 444-459.
[10] LI Q A, CAI C, TAKAO M, et al.Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method[J]. Energy, 2021, 225: 120274.
[11] NETZBAND S, SCHULZ C W, GOETTSCHE U, et al.A panel method for floating offshore wind turbine simulations with fully integrated aero- and hydrodynamic modelling in time domain[J]. Ship technology research, 2018, 65(3): 123-136.
[12] 刘利琴, 陈迪郁, 沈文君, 等. 基于非定常面元法的海上浮式风机气动性能研究[J]. 海洋工程, 2021, 39(5): 16-28.
LIU L Q, CHEN D Y, SHEN W J, et al.Study on aerodynamic characteristics of floating wind turbines with unsteady panel method[J]. The ocean engineering, 2021, 39(5): 16-28.
[13] JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5 MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, 2009.
[14] ROBERTSON A, JONKMAN J, MASCIOLA M, et al.Definition of the Semisubmersible Floating System for Phase II of OC4[R]. NREL/TP-5000-60601, 2014.
[15] 肖昌水. 海上浮式风机气动载荷及刚: 柔耦合动力响应研究[D]. 天津: 天津大学, 2018.
XIAO C S.Research on aerodynamic loads and rigid-flexible coupling dynamic response of offshore floating wind turbine[D]. Tianjin: Tianjin University, 2018.
[16] CHOU J S, CHIU C K, HUANG I K, et al.Failure analysis of wind turbine blade under critical wind loads[J]. Engineering failure analysis, 2013, 27: 99-118.
[17] 张建平, 张开华, 王明强, 等. 转速对风机叶片位移和应力的影响[J]. 机床与液压, 2020, 48(19): 156-160.
ZHANG J P, ZHANG K H, WANG M Q, et al.Influence of rotating speed on displacement and stress of wind turbine blade[J]. Machine tool & hydraulics, 2020, 48(19): 156-160.
PDF(2602 KB)

Accesses

Citation

Detail

Sections
Recommended

/