DESIGN AND APPLICATION OF THIN FILM SOLAR COLLECTORS ON MARS SURFACE

Zhang Bingqiang, Jia Yang, Yang Miao, Zhang Wangjun

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 315-322.

PDF(2250 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2250 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 315-322. DOI: 10.19912/j.0254-0096.tynxb.2022-0095

DESIGN AND APPLICATION OF THIN FILM SOLAR COLLECTORS ON MARS SURFACE

  • Zhang Bingqiang1,2, Jia Yang2, Yang Miao3, Zhang Wangjun1
Author information +
History +

Abstract

A thin-film solar collector based on in-situ thermal utilization of solar energy on the Martian surface is proposed in view of the thermal energy shortage of the Mars probe and the difficulties in performance and environmental adaptability of the in-situ thermal utilization. A highly transparent polyimide-film window and selective absorbing coating are adopted for heat collection, while a 3D-printed phase-change device with a high filling factor is adopted for energy storage. The semi-rigid forming design, adaptation to the thermal deformation, and passive decompression are also exploited to solve the problems of dust accumulation on the Martian surface, large thermal strain caused by varying temperatures and rapid decompression during the interstellar flight. Simulations and experiments demonstrate that the solar collector can adapt to the harsh conditions on Mars with a maximum photothermal conversion efficiency of 74.9%, an average daily heat-collection efficiency of 32.5%-49.8%, and a heat collection per unit area of 1105.7-2381.5 Wh/(m2∙sol).

Key words

solar energy / solar collector / rover / Mars / thermal control

Cite this article

Download Citations
Zhang Bingqiang, Jia Yang, Yang Miao, Zhang Wangjun. DESIGN AND APPLICATION OF THIN FILM SOLAR COLLECTORS ON MARS SURFACE[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 315-322 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0095

References

[1] NOVAK K S, PHILLIPS C J, BIRUR G C, et al.Development of a thermal control architecture for the mars exploration rovers[C]//20th Symposium on Space Nuclear Power and Propulsion, Albuquerque, New Mexico, USA, 2003.
[2] BHANDARI P, BIRUR G, PAUKEN M, et al.Mars science laboratory thermal control architecture[C]//35th International Conference on Environmental Systems, Rome, Italy, 2005.
[3] 张昕宇, 李鹏, 何涛, 等. 中国太阳能中温集热技术进展及应用[J]. 太阳能学报, 2019, 40(6): 1494-1502.
ZHANG X Y, LI P, HE T, et al.Development situation of medium temperature solar thermal technology in china[J]. Acta energiae solaris sinica, 2019, 40(6): 1494-1502.
[4] 王登甲, 王晓文, 刘艳峰, 等. 平板集热器传热模型及热性能研究进展[J]. 建筑热能通风空调, 2018, 37(12): 52-59.
WANG D J, WANG X W, LIU Y F, et al.Research progress in heat transfer model and thermal performance of flat-plate solar collector[J]. Building energy & environment, 2018, 37(12): 52-59.
[5] 杨鲁伟, 李明, 高文峰, 等. 不同吸热涂层平板集热器的热性能衰减研究[J]. 太阳能学报, 2020, 41(3): 248-254.
YANG L W, LI M, GAO W F, et al.Research on attenuation of thermal performance of flat-plate solar collectors with different heat-absorbing coatings[J]. Acta energiae solaris sinica, 2020, 41(3): 248-254.
[6] 王敏, 李博佳, 徐伟, 等. 大气降尘及降水对平板集热器盖板透过率[J].太阳能学报, 2018, 39(11): 3053-3059.
WANG M, LI B J, XU W, et al.Experimental study on effect of dustfall and rainfall to cover transmittance of flat-plate solar collectors[J]. Acta energiae solaris sinica, 2018, 39(11): 3053-3059.
[7] HELIOVIS. Inflatable solar collector[EB/OL].https://heliovis.com/technology/.
[8] DAKHOUL Y M, SOMERS R E, HAYNES R D.A conceptual design for a space-based solar water heater[J]. Solar energy, 1990, 44(3): 161-171.
[9] BADESCUA V, POPESCUB G, FEIDT M.Design and optimisation of a combination solar collector-thermal engine operating on Mars[J]. Renewable energy, 2000, 21(1): 1-22.
[10] 艾素芬, 向艳超, 雷尧飞, 等. 火星车低密度纳米气凝胶隔热材料制备及性能研究[J]. 深空探测学报, 2020, 7(5): 466-473.
AI S F, XIANG Y C, LEI Y F, et al.Research development of biomass conversion technology preparation and characterization of ultra-low density nano-aerogel insulation materials for mars rover[J]. Journal of deep space exploration, 2020, 7(5): 466-473.
[11] NASA SP-8020, Surface models of mars[S].
[12] APPELBAUM J, LANDISG A. Solar radiation on mars update1991[R]. NASA technical memorandum 105216, 1991.
[13] 张鹤飞. 太阳能热利用原理与计算机模拟[M]. 西安: 西北工业大学出版社, 2004: 78-117.
ZHANG HF. principles and computer simulation of solar energy thermal utilization[M]. Xi’an: Northwestern polytechnicol University Press, 2004: 78-117.
[14] GB/T6424—2007, 平板型太阳集热器技术条件[S].
GB/T6424—2007, Technical specifications for flat plate solar collectors[S].
[15] RODRÍGUEZ-HIDALGO M C, RODRÍGUEZ-AUMENTE P A, LECUONA A, et al. Flat plate thermal solar collector efficiency: transient behavior under working conditions.Part II: model application and design contributions[J]. Applied thermal engineering, 2011, 31(14/15): 2385-2393.
[16] 王敏, 何涛, 李博佳, 等. 太阳模拟器人造冷天空的模型研究及其应用[J]. 太阳能学报, 2016, 37(4): 905-911.
WANG M, HE T, LI B J, et al.Modeling and application of artificial sky for solar simulator[J]. Acta energiae solaris sinica, 2016, 37(4): 905-911.
PDF(2250 KB)

Accesses

Citation

Detail

Sections
Recommended

/