ASH DEPOSITION PREDICTION OF PHOTOVOLTAIC MODULES BASED ON IMPROVED BES-LSSVM

Gao Yu, Kang Xingguo, Zhou Shaodi, Feng Xiaojing, Wang Yinqing, Kong Xiaolong

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 213-219.

PDF(1797 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1797 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 213-219. DOI: 10.19912/j.0254-0096.tynxb.2022-0098

ASH DEPOSITION PREDICTION OF PHOTOVOLTAIC MODULES BASED ON IMPROVED BES-LSSVM

  • Gao Yu, Kang Xingguo, Zhou Shaodi, Feng Xiaojing, Wang Yinqing, Kong Xiaolong
Author information +
History +

Abstract

In order to explore the relationship between meteorological factors and photovoltaic panel ash deposition, an ash deposition prediction model based on least squares support vector machine (LSSVM) optimized by improved bald eagle algorithm (IBES) is proposed. The model uses meteorological factors such as rainfall and wind speed as input to predict the ash content of the plate area. By introducing the Gauss-Cauchy mutation operator to mutate the optimal individual of the population, the optimal selection is entered into the next iteration, which improves the shortcomings of the original vulture algorithm, such as slow convergence speed and easy to fall into local optimum. The parameters obtained by the improved algorithm are substituted into the model, and compared with other kinds of algorithm models after simulation. The results show that the prediction error of the IBES-LSSVM ash accumulation prediction model is smaller and the fitting effect is better. Finally, the power generation loss is calculated according to the cumulative ash accumulation, and the component cleaning is guided according to the rainfall conditions.

Key words

photovoltaic modules / ash / rainfall / support vector machine / bald eagle search

Cite this article

Download Citations
Gao Yu, Kang Xingguo, Zhou Shaodi, Feng Xiaojing, Wang Yinqing, Kong Xiaolong. ASH DEPOSITION PREDICTION OF PHOTOVOLTAIC MODULES BASED ON IMPROVED BES-LSSVM[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 213-219 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0098

References

[1] 丁怡婷. 我国可再生能源发电装机容量超10亿千瓦[N]. 人民日报, 2021-11-29(001).
DING Y T. The installed capacity of renewable energy power generation in China exceeds 1 billion kW[N]. People’s daily, 2021-11-29(001).
[2] 陈金鑫, 潘国兵, 欧阳静, 等. 自然降雨下光伏组件积灰预测方法研究[J]. 太阳能学报, 2021, 42(2): 431-437.
CHEN J X, PAN G B, OUYANG J, et al.Study on prediction algorithm of dustfall on PV modules under natural rainfall[J]. Acta energiae solaris sinica, 2021, 42(2): 431-437.
[3] SAID S, WALWIL H M.Fundamental studies on dust fouling effects on PV module performance[J]. Solar energy, 2014, 107: 328-337.
[4] GHOLAMI A, KHAZAEE I, ESLAMI S, et al.Experimental investigation of dust deposition effects on photo-voltaic output performance[J]. Solar energy, 2018, 159: 346-352.
[5] CARON J R, LITTMANN B.Direct monitoring of energy lost due to soiling on first solar modules in California[J]. IEEE journal of photovoltaics, 2013, 3(1): 336-340.
[6] MICHELI L, MULLER M.An investigation of the key parameters for predicting PV soiling losses[J]. Progress photovoltaics research & opplications, 2017, 25: 291-307.
[7] JIANG Y, LU L,LU H.A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment[J]. Solar energy, 2016, 140: 236-240.
[8] GUO B, JAVED W, FIGGIS B.W, et al. Effect of dust and weather conditions on photovoltaic performance in Doha, Qatar[C]// 2015 First Workshop on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 2015.
[9] 张国宏, 谈建国, 郑有飞, 等. 上海市月降尘量与气象因子间关系研究[J]. 气象科学, 2006, 26(3): 3328-3333.
ZHANG G H, TAN J G, ZHENG Y F, et al.Relationships between monthly amount of dustfall and meteorological factors in Shanghai[J]. Scientia meteorologica sinica, 2006, 26(3): 3328-3333.
[10] JAVED W, GUO B, FIGGIS B W.Modeling of photovoltaic soiling loss as a function of environmental variables[J]. Solar energy, 2017, 157: 397-407.
[11] 韩坤. 基于ALSTM的光伏出力短期预测研究[J]. 仪器仪表用户, 2022, 29(2): 95-100.
HAN K.Research on short-term forecast of photovoltaic output based on ALSTM[J]. Instrumentation, 2022, 29(2): 95-100.
[12] 王粟, 隗磊锋, 曾亮. 基于PSO-RVM模型的光伏出力日前区间预测[J]. 湖北工业大学学报, 2021, 36(5): 37-41.
WANG S, WEI L F, ZENG L.Day ahead interval forecasting model of PV power based on PSO-RVM[J]. Journal of Hubei University of Technology, 2021, 36(5): 37-41.
[13] 郭枭, 田瑞, 邱云峰, 等. 清洁光伏组件温度预测及影响因素研究[J]. 太阳能学报, 2021, 42(11): 76-85.
GUO X, TIAN R, QIU Y F, et al.Study on temperature prediction and influence factors of clean photovoltaic modules[J]. Acta energiae solaris sinica, 2021, 42(11): 76-85.
[14] ALJARAH I, AL-ZOUBI A M, FARIS H, et al.Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm[J]. Cognitive computation, 2018, 10(2): 478-495.
[15] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural processing letters, 1999, 9(3): 293-300.
[16] 贾鹤鸣, 姜子超, 李瑶. 基于改进秃鹰搜索算法的同步优化特征选择[J]. 控制与决策, 2022, 37(2): 445-454.
JIA H M, JIANG Z C, LI Y.Simultaneous feature selection optimization based on improved bald eagle search algorithm[J]. Control and decision, 2022, 37(2): 445-454.
[17] ALSATTAR H A, ZAIDAN A A, ZAIDAN B B.Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial intelligence review, 2020, 53(3): 2237-2264.
[18] 张燕, 陈慧丹, 周颖, 等. 基于改进的GWO-LSSVM磨矿粒度软测量模型[J]. 计算机仿真, 2020, 37(6): 298-304.
ZHANG Y, CHEN H D, ZHOU Y, et al.Soft-measuring model for grinding particle size based on the improved GWO-LSSVM model[J]. Computer simulation, 2020, 37(6): 298-304.
[19] 魏昕, 冯锋. 基于高斯-柯西变异的帝国竞争算法优化[J]. 计算机科学, 2021, 48(S2): 142-146.
WEI X, FENG F.Optimization of empire competition algorithm based on Gauss-Cauchy mutation[J]. Computer science, 2021, 48(S2): 142-146.
[20] HEGAZY Y G, SALAMA M, CHIKHANI A Y.Adequacy assessment of distributed generation systems using Monte Carlo simulation[J]. IEEE transactions on power systems, 2003, 18(1): 48-52.
PDF(1797 KB)

Accesses

Citation

Detail

Sections
Recommended

/