TRANSIENT OVERVOLTAGE ANALYSIS AND RAPID ESTIMATION OF INTEGRATED ENERGY AC-DC HYBRID TRANSMISSION SYSTEM

Yi Lidong, Bai Shibin, Zhang Wenchao, Tian Zhihao, Liu Shunnan, Liu Gang

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 122-129.

PDF(1694 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1694 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (6) : 122-129. DOI: 10.19912/j.0254-0096.tynxb.2022-0101

TRANSIENT OVERVOLTAGE ANALYSIS AND RAPID ESTIMATION OF INTEGRATED ENERGY AC-DC HYBRID TRANSMISSION SYSTEM

  • Yi Lidong1, Bai Shibin1, Zhang Wenchao2, Tian Zhihao1, Liu Shunnan2, Liu Gang1
Author information +
History +

Abstract

Aiming at the problem that the transient overvoltage caused by fault disturbance is difficult to calculate quickly and accurately in the AC-DC transmission terminal system with large capacity DC and high proportion of new energy centralized access, which leads to the safe and stable operation of the system, a method of transient overvoltage analysis and rapid estimation of the integrated energy AC-DC hybrid transmission system is proposed. In this regard, this paper firstly establishes an equivalent model of the sending end system of wind and fire bundling, considering the regulation characteristics of the AC and DC integrated energy after the energy storage system being connected, and corrects the transient overvoltage after the fault. The dynamic change characteristics of active power and reactive power of wind turbines under fault disturbance are analyzed, and the calculation flow of transient overvoltage is given. Then, the time-varying parameter identification method of transient overvoltage is analyzed, and a fast estimation method of transient overvoltage in AC-DC system is proposed. Finally, a simulation model is established based on the data of the AC/DC transmission side system in a certain place. The simulation results verify that the proposed method has superiority in the calculation accuracy and convergence speed of the transient overvoltage of the AC/DC transmission side system.

Key words

integrated energy / AC/DC / transient overvoltage / new energy / fast estimation

Cite this article

Download Citations
Yi Lidong, Bai Shibin, Zhang Wenchao, Tian Zhihao, Liu Shunnan, Liu Gang. TRANSIENT OVERVOLTAGE ANALYSIS AND RAPID ESTIMATION OF INTEGRATED ENERGY AC-DC HYBRID TRANSMISSION SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 122-129 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0101

References

[1] 陈涵, 郝瑞祥, 刘颖英, 等. 基于改进RLS算法的时变幂函数负荷模型参数辨识[J]. 高电压技术, 2020, 46(7): 2380-2388.
CHEN H, HAO R X, LIU Y Y, et al.Parameter identification of time-varying exponential load model based on improved RLS algorithm[J]. High voltage engineering, 2020, 46(7): 2380-2388.
[2] 吕鹏飞. 交直流混联电网下直流输电系统运行面临的挑战及对策[J]. 电网技术, 2022, 46(2): 503-510.
LYU P F.Research on HVDC operation characteristics under influence of hybrid AC/DC power grids[J]. Power system technology, 2022, 46(2): 503-510.
[3] 陈哲, 华文, 石博隆. 考虑风险的交直流混联系统鲁棒备用优化[J]. 电网技术, 2022, 46(7): 2483-2491.
CHEN Z, HUA W, SHI B L.Risk-based robust reserve scheduling for hybrid AC-DC systems via analytical target cascading[J]. Power system technology, 2022, 46(7): 2483-2491.
[4] 骆悦, 姚骏, 张田, 等. 大规模风电直流外送系统单极闭锁场景下送端系统协调控制策略[J]. 电工技术学报, 2019, 34(19): 4108-4118.
LUO Y, YAO J, ZHANG T, et al.Coordinated control strategy of large-scale wind power generation sending system under mono-polar block fault[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4108-4118.
[5] 张炎, 丁明, 韩平平, 等. 直流闭锁后风电送端系统暂态稳定及控制策略研究[J]. 电工技术学报, 2020, 35(17): 3714-3726.
ZHANG Y, DING M, HAN P P, et al.Study on the transient stability and control schemes of the sending-end system involving wind power after UHVDC block[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3714-3726.
[6] YIN C Y, LI F T.Analytical expression on transient overvoltage peak value of converter bus caused by DC faults[J]. IEEE transactions on power systems, 2021, 36(3): 2741-2744.
[7] 李岩, 滕云, 冷欧阳. 含多端柔性直流互联的交直流电力系统静态安全分析[J]. 电力系统自动化, 2019, 43(10): 155-161.
LI Y, TENG Y, LENG O Y.Static security analysis of AC/DC power system with multi-terminal flexible DC[J]. Automation of electric power systems, 2019, 43(10): 155-161.
[8] 郝晓弘, 胡开伟, 裴婷婷, 等. 风电接入交直流混联电网外送消纳能力研究[J]. 太阳能学报, 2021, 42(10): 195-201.
HAO X H, HU K W, PEI T T, et al.Study on transmit capacity of wind power connected to AC/DC hybrid transmission grid[J]. Acta energiae solaris sinica, 2021, 42(10): 195-201.
[9] 汪露露, 吴红斌, 周亦尧. 基于供能可靠性的综合能源系统优化配置[J]. 太阳能学报, 2021, 42(12): 395-400.
WANG L L, WU H B, ZHOU Y Y.Optimal configuration of integrated energy system based on energy supply reliability[J]. Acta energiae solaris sinica, 2021, 42(12): 395-400.
[10] SUN P, TENG Y, CHEN Z.Multi-objective robust optimization of multi-energy microgrid with waste treatment[J]. Renewable energy, 2021, 178: 1198-1210.
[11] 马光, 张伊宁, 陈哲. 含大规模风电的交直流混联系统风险评估方法[J]. 电网技术, 2019, 43(9): 3241-3252.
MA G, ZHANG Y N, CHEN Z.Risk assessment method for hybrid AC/DC system with large-scale wind power integration[J]. Power system technology, 2019, 43(9): 3241-3252.
[12] YI B W, XU J H, FAN Y.Inter-regional power grid planning up to 2030 in China considering renewable energy development and regional pollutant control: a multi-region bottom-up optimization model[J]. Applied energy, 2016, 184: 641-658.
[13] TENG Y, HUI Q, LI Y.et al.Availability estimation of wind power forecasting and optimization of day-ahead unit commitment[J]. Journal of modern power systems and clean energy, 2019, 7(6): 1675-1683.
[14] 潘华, 梁作放, 肖雨涵, 等. 多场景下区域综合能源系统的优化运行[J]. 太阳能学报, 2021, 42(1): 484-492.
PAN H, LIANG Z F, XIAO Y H, et al.Optimal operation of regional integrated energy system under multiple scenes[J]. Acta energiae solaris sinica, 2021, 42(1): 484-492.
[15] FAHMY S A, MOHAN A R.Architecture for real-time nonparametric probability density function estimation[J]. IEEE transactions on very large scale integration (VLSI) systems, 2013, 21(5): 910-920.
[16] GAO S P, LIU Q, SONG G B.Current differential protection principle of HVDC transmission system[J]. IET generation, transmission & distribution, 2017, 11(5): 1286-1292.
[17] SUN P, TENG Y, CHEN Z.Robust coordinated optimization for multi-energy systems based on multiple thermal inertia numerical simulation and uncertainty analysis[J]. Applied energy,2021,296:116982.
[18] BIRD T J, JAIN N .Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage[J]. Applied energy, 2020, 271: 114955.
[19] SUN P, TENG Y, LENG O Y, et al.Stability control method for hybrid AC-DC transmission systems considering cross-region multi-energy coordination[J]. CSEE journal of power and energy systems, 2020, 7(4): 753-760.
[20] AJAEI F B, IRAVANI R.Dynamic interactions of the MMC-HVDC grid and its host AC system due to AC-side disturbances[J]. IEEE transactions on power delivery, 2016, 31(3): 1289-1298.
[21] 孙鹏, 滕云, 回茜, 等. 考虑异质能流输运特性的多能源系统惯量极限优化[J]. 中国电机工程学报, 2022, 42(10): 3642-3656.
SUN P, TENG Y, HUI Q, et al.Inertia limit optimization of multi-energy system considering the transport characteristics of heterogeneous energy flow[J]. Proceedings of the CSEE, 2022, 42(10): 3642-3656.
[22] 徐珂. 我国西北综合能源基地构建的意义及其潜在环境影响分析[D]. 济南: 山东大学, 2016.
XU K.Significance of constructing comprehensive energy bases in northwest China and its potential environmental impacts[D]. Ji’nan: Shandong University, 2016.
[23] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Y Z, KANG L G, ZHANG J, et al.Development history, typical from and future trend of integrated energy system[J]. Acta energiae solaris sinica, 2021, 42(8): 84-95.
[24] 李凯, 康世崴, 闫方. 基于风光火储的多能互补新能源基地规划分析[J]. 山东电力技术, 2020, 47(10): 17-21, 35.
LI K, KANG S W, YAN F.Planning analysis of new energy base based on wind-photovoltaic-thermal-energy storage multi-energy complementary[J]. Shandong electric power, 2020, 47(10): 17-21, 35.
PDF(1694 KB)

Accesses

Citation

Detail

Sections
Recommended

/